1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This application demonstrates how to use the CUDA API to use multiple GPUs,
* with an emphasis on simple illustration of the techniques (not on
* performance).
*
* Note that in order to detect multiple GPUs in your system you have to disable
* SLI in the nvidia control panel. Otherwise only one GPU is visible to the
* application. On the other side, you can still extend your desktop to screens
* attached to both GPUs.
*/
// System includes
#include <stdio.h>
#include <assert.h>
// CUDA runtime
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
#ifndef MAX
#define MAX(a, b) (a > b ? a : b)
#endif
#include "simpleMultiGPU.h"
////////////////////////////////////////////////////////////////////////////////
// Data configuration
////////////////////////////////////////////////////////////////////////////////
const int MAX_GPU_COUNT = 32;
const int DATA_N = 1048576 * 32;
////////////////////////////////////////////////////////////////////////////////
// Simple reduction kernel.
// Refer to the 'reduction' CUDA Sample describing
// reduction optimization strategies
////////////////////////////////////////////////////////////////////////////////
__global__ static void reduceKernel(float *d_Result, float *d_Input, int N) {
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
const int threadN = gridDim.x * blockDim.x;
float sum = 0;
for (int pos = tid; pos < N; pos += threadN) sum += d_Input[pos];
d_Result[tid] = sum;
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
// Solver config
TGPUplan plan[MAX_GPU_COUNT];
// GPU reduction results
float h_SumGPU[MAX_GPU_COUNT];
float sumGPU;
double sumCPU, diff;
int i, j, gpuBase, GPU_N;
const int BLOCK_N = 32;
const int THREAD_N = 256;
const int ACCUM_N = BLOCK_N * THREAD_N;
printf("Starting simpleMultiGPU\n");
checkCudaErrors(cudaGetDeviceCount(&GPU_N));
if (GPU_N > MAX_GPU_COUNT) {
GPU_N = MAX_GPU_COUNT;
}
printf("CUDA-capable device count: %i\n", GPU_N);
printf("Generating input data...\n\n");
// Subdividing input data across GPUs
// Get data sizes for each GPU
for (i = 0; i < GPU_N; i++) {
plan[i].dataN = DATA_N / GPU_N;
}
// Take into account "odd" data sizes
for (i = 0; i < DATA_N % GPU_N; i++) {
plan[i].dataN++;
}
// Assign data ranges to GPUs
gpuBase = 0;
for (i = 0; i < GPU_N; i++) {
plan[i].h_Sum = h_SumGPU + i;
gpuBase += plan[i].dataN;
}
// Create streams for issuing GPU command asynchronously and allocate memory
// (GPU and System page-locked)
for (i = 0; i < GPU_N; i++) {
checkCudaErrors(cudaSetDevice(i));
checkCudaErrors(cudaStreamCreate(&plan[i].stream));
// Allocate memory
checkCudaErrors(
cudaMalloc((void **)&plan[i].d_Data, plan[i].dataN * sizeof(float)));
checkCudaErrors(
cudaMalloc((void **)&plan[i].d_Sum, ACCUM_N * sizeof(float)));
checkCudaErrors(cudaMallocHost((void **)&plan[i].h_Sum_from_device,
ACCUM_N * sizeof(float)));
checkCudaErrors(cudaMallocHost((void **)&plan[i].h_Data,
plan[i].dataN * sizeof(float)));
for (j = 0; j < plan[i].dataN; j++) {
plan[i].h_Data[j] = (float)rand() / (float)RAND_MAX;
}
}
// Start timing and compute on GPU(s)
printf("Computing with %d GPUs...\n", GPU_N);
// create and start timer
StopWatchInterface *timer = NULL;
sdkCreateTimer(&timer);
// start the timer
sdkStartTimer(&timer);
// Copy data to GPU, launch the kernel and copy data back. All asynchronously
for (i = 0; i < GPU_N; i++) {
// Set device
checkCudaErrors(cudaSetDevice(i));
// Copy input data from CPU
checkCudaErrors(cudaMemcpyAsync(plan[i].d_Data, plan[i].h_Data,
plan[i].dataN * sizeof(float),
cudaMemcpyHostToDevice, plan[i].stream));
// Perform GPU computations
reduceKernel<<<BLOCK_N, THREAD_N, 0, plan[i].stream>>>(
plan[i].d_Sum, plan[i].d_Data, plan[i].dataN);
getLastCudaError("reduceKernel() execution failed.\n");
// Read back GPU results
checkCudaErrors(cudaMemcpyAsync(plan[i].h_Sum_from_device, plan[i].d_Sum,
ACCUM_N * sizeof(float),
cudaMemcpyDeviceToHost, plan[i].stream));
}
// Process GPU results
for (i = 0; i < GPU_N; i++) {
float sum;
// Set device
checkCudaErrors(cudaSetDevice(i));
// Wait for all operations to finish
cudaStreamSynchronize(plan[i].stream);
// Finalize GPU reduction for current subvector
sum = 0;
for (j = 0; j < ACCUM_N; j++) {
sum += plan[i].h_Sum_from_device[j];
}
*(plan[i].h_Sum) = (float)sum;
// Shut down this GPU
checkCudaErrors(cudaFreeHost(plan[i].h_Sum_from_device));
checkCudaErrors(cudaFree(plan[i].d_Sum));
checkCudaErrors(cudaFree(plan[i].d_Data));
checkCudaErrors(cudaStreamDestroy(plan[i].stream));
}
sumGPU = 0;
for (i = 0; i < GPU_N; i++) {
sumGPU += h_SumGPU[i];
}
sdkStopTimer(&timer);
printf(" GPU Processing time: %f (ms)\n\n", sdkGetTimerValue(&timer));
sdkDeleteTimer(&timer);
// Compute on Host CPU
printf("Computing with Host CPU...\n\n");
sumCPU = 0;
for (i = 0; i < GPU_N; i++) {
for (j = 0; j < plan[i].dataN; j++) {
sumCPU += plan[i].h_Data[j];
}
}
// Compare GPU and CPU results
printf("Comparing GPU and Host CPU results...\n");
diff = fabs(sumCPU - sumGPU) / fabs(sumCPU);
printf(" GPU sum: %f\n CPU sum: %f\n", sumGPU, sumCPU);
printf(" Relative difference: %E \n\n", diff);
// Cleanup and shutdown
for (i = 0; i < GPU_N; i++) {
checkCudaErrors(cudaSetDevice(i));
checkCudaErrors(cudaFreeHost(plan[i].h_Data));
}
exit((diff < 1e-5) ? EXIT_SUCCESS : EXIT_FAILURE);
}
|