1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include <helper_cuda.h> // helper functions for CUDA error check
const int manualBlockSize = 32;
////////////////////////////////////////////////////////////////////////////////
// Test kernel
//
// This kernel squares each array element. Each thread addresses
// himself with threadIdx and blockIdx, so that it can handle any
// execution configuration, including anything the launch configurator
// API suggests.
////////////////////////////////////////////////////////////////////////////////
__global__ void square(int *array, int arrayCount) {
extern __shared__ int dynamicSmem[];
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < arrayCount) {
array[idx] *= array[idx];
}
}
////////////////////////////////////////////////////////////////////////////////
// Potential occupancy calculator
//
// The potential occupancy is calculated according to the kernel and
// execution configuration the user desires. Occupancy is defined in
// terms of active blocks per multiprocessor, and the user can convert
// it to other metrics.
//
// This wrapper routine computes the occupancy of kernel, and reports
// it in terms of active warps / maximum warps per SM.
////////////////////////////////////////////////////////////////////////////////
static double reportPotentialOccupancy(void *kernel, int blockSize,
size_t dynamicSMem) {
int device;
cudaDeviceProp prop;
int numBlocks;
int activeWarps;
int maxWarps;
double occupancy;
checkCudaErrors(cudaGetDevice(&device));
checkCudaErrors(cudaGetDeviceProperties(&prop, device));
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&numBlocks, kernel, blockSize, dynamicSMem));
activeWarps = numBlocks * blockSize / prop.warpSize;
maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;
occupancy = (double)activeWarps / maxWarps;
return occupancy;
}
////////////////////////////////////////////////////////////////////////////////
// Occupancy-based launch configurator
//
// The launch configurator, cudaOccupancyMaxPotentialBlockSize and
// cudaOccupancyMaxPotentialBlockSizeVariableSMem, suggests a block
// size that achieves the best theoretical occupancy. It also returns
// the minimum number of blocks needed to achieve the occupancy on the
// whole device.
//
// This launch configurator is purely occupancy-based. It doesn't
// translate directly to performance, but the suggestion should
// nevertheless be a good starting point for further optimizations.
//
// This function configures the launch based on the "automatic"
// argument, records the runtime, and reports occupancy and runtime.
////////////////////////////////////////////////////////////////////////////////
static int launchConfig(int *array, int arrayCount, bool automatic) {
int blockSize;
int minGridSize;
int gridSize;
size_t dynamicSMemUsage = 0;
cudaEvent_t start;
cudaEvent_t end;
float elapsedTime;
double potentialOccupancy;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&end));
if (automatic) {
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(
&minGridSize, &blockSize, (void *)square, dynamicSMemUsage,
arrayCount));
std::cout << "Suggested block size: " << blockSize << std::endl
<< "Minimum grid size for maximum occupancy: " << minGridSize
<< std::endl;
} else {
// This block size is too small. Given limited number of
// active blocks per multiprocessor, the number of active
// threads will be limited, and thus unable to achieve maximum
// occupancy.
//
blockSize = manualBlockSize;
}
// Round up
//
gridSize = (arrayCount + blockSize - 1) / blockSize;
// Launch and profile
//
checkCudaErrors(cudaEventRecord(start));
square<<<gridSize, blockSize, dynamicSMemUsage>>>(array, arrayCount);
checkCudaErrors(cudaEventRecord(end));
checkCudaErrors(cudaDeviceSynchronize());
// Calculate occupancy
//
potentialOccupancy =
reportPotentialOccupancy((void *)square, blockSize, dynamicSMemUsage);
std::cout << "Potential occupancy: " << potentialOccupancy * 100 << "%"
<< std::endl;
// Report elapsed time
//
checkCudaErrors(cudaEventElapsedTime(&elapsedTime, start, end));
std::cout << "Elapsed time: " << elapsedTime << "ms" << std::endl;
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// The test
//
// The test generates an array and squares it with a CUDA kernel, then
// verifies the result.
////////////////////////////////////////////////////////////////////////////////
static int test(bool automaticLaunchConfig, const int count = 1000000) {
int *array;
int *dArray;
int size = count * sizeof(int);
array = new int[count];
for (int i = 0; i < count; i += 1) {
array[i] = i;
}
checkCudaErrors(cudaMalloc(&dArray, size));
checkCudaErrors(cudaMemcpy(dArray, array, size, cudaMemcpyHostToDevice));
for (int i = 0; i < count; i += 1) {
array[i] = 0;
}
launchConfig(dArray, count, automaticLaunchConfig);
checkCudaErrors(cudaMemcpy(array, dArray, size, cudaMemcpyDeviceToHost));
checkCudaErrors(cudaFree(dArray));
// Verify the return data
//
for (int i = 0; i < count; i += 1) {
if (array[i] != i * i) {
std::cout << "element " << i << " expected " << i * i << " actual "
<< array[i] << std::endl;
return 1;
}
}
delete[] array;
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// Sample Main
//
// The sample runs the test with manually configured launch and
// automatically configured launch, and reports the occupancy and
// performance.
////////////////////////////////////////////////////////////////////////////////
int main() {
int status;
std::cout << "starting Simple Occupancy" << std::endl << std::endl;
std::cout << "[ Manual configuration with " << manualBlockSize
<< " threads per block ]" << std::endl;
status = test(false);
if (status) {
std::cerr << "Test failed\n" << std::endl;
return -1;
}
std::cout << std::endl;
std::cout << "[ Automatic, occupancy-based configuration ]" << std::endl;
status = test(true);
if (status) {
std::cerr << "Test failed\n" << std::endl;
return -1;
}
std::cout << std::endl;
std::cout << "Test PASSED\n" << std::endl;
return 0;
}
|