File: simpleSurfaceWrite.cu

package info (click to toggle)
nvidia-cuda-samples 12.4.1~dfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 313,216 kB
  • sloc: cpp: 82,042; makefile: 53,971; xml: 15,381; ansic: 8,630; sh: 91; python: 74
file content (295 lines) | stat: -rw-r--r-- 10,987 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * This sample demonstrates how use texture fetches in CUDA
 *
 * This sample takes an input PGM image (imageFilename) and generates
 * an output PGM image (imageFilename_out).  This CUDA kernel performs
 * a simple 2D transform (rotation) on the texture coordinates (u,v).
 */

// Includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#ifdef _WIN32
#define WINDOWS_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#endif

// Includes CUDA
#include <cuda_runtime.h>

// Utilities and timing functions
#include <helper_functions.h>  // includes cuda.h and cuda_runtime_api.h

// CUDA helper functions
#include <helper_cuda.h>  // helper functions for CUDA error check

#define MIN_EPSILON_ERROR 5e-3f

////////////////////////////////////////////////////////////////////////////////
// Define the files that are to be save and the reference images for validation
const char *imageFilename = "teapot512.pgm";
const char *refFilename = "ref_rotated.pgm";
float angle = 0.5f;  // angle to rotate image by (in radians)

// Auto-Verification Code
bool testResult = true;

static const char *sampleName = "simpleSurfaceWrite";

////////////////////////////////////////////////////////////////////////////////
// Kernels
////////////////////////////////////////////////////////////////////////////////
//! Write to a cuArray (texture data source) using surface writes
//! @param gIData input data in global memory
////////////////////////////////////////////////////////////////////////////////
__global__ void surfaceWriteKernel(float *gIData, int width, int height,
                                   cudaSurfaceObject_t outputSurface) {
  // calculate surface coordinates
  unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
  unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

  // read from global memory and write to cuarray (via surface reference)
  surf2Dwrite(gIData[y * width + x], outputSurface, x * 4, y,
              cudaBoundaryModeTrap);
}

////////////////////////////////////////////////////////////////////////////////
//! Transform an image using texture lookups
//! @param gOData  output data in global memory
////////////////////////////////////////////////////////////////////////////////
__global__ void transformKernel(float *gOData, int width, int height,
                                float theta, cudaTextureObject_t tex) {
  // calculate normalized texture coordinates
  unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
  unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

  float u = x / (float)width;
  float v = y / (float)height;

  // transform coordinates
  u -= 0.5f;
  v -= 0.5f;
  float tu = u * cosf(theta) - v * sinf(theta) + 0.5f;
  float tv = v * cosf(theta) + u * sinf(theta) + 0.5f;

  // read from texture and write to global memory
  gOData[y * width + x] = tex2D<float>(tex, tu, tv);
}

////////////////////////////////////////////////////////////////////////////////
// Declaration, forward
void runTest(int argc, char **argv);

extern "C" void computeGold(float *reference, float *idata,
                            const unsigned int len);

////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
  printf("%s starting...\n", sampleName);

  // Process command-line arguments
  if (argc > 1) {
    if (checkCmdLineFlag(argc, (const char **)argv, "input")) {
      getCmdLineArgumentString(argc, (const char **)argv, "input",
                               (char **)&imageFilename);

      if (checkCmdLineFlag(argc, (const char **)argv, "reference")) {
        getCmdLineArgumentString(argc, (const char **)argv, "reference",
                                 (char **)&refFilename);
      } else {
        printf("-input flag should be used with -reference flag");
        exit(EXIT_FAILURE);
      }
    } else if (checkCmdLineFlag(argc, (const char **)argv, "reference")) {
      printf("-reference flag should be used with -input flag");
      exit(EXIT_FAILURE);
    }
  }

  runTest(argc, argv);

  printf("%s completed, returned %s\n", sampleName,
         testResult ? "OK" : "ERROR!");
  exit(testResult ? EXIT_SUCCESS : EXIT_FAILURE);
}

////////////////////////////////////////////////////////////////////////////////
//! Run a simple test for CUDA
////////////////////////////////////////////////////////////////////////////////
void runTest(int argc, char **argv) {
  // Use command-line specified CUDA device,
  // otherwise use device with highest Gflops/s
  int devID = findCudaDevice(argc, (const char **)argv);

  // Get number of SMs on this GPU
  cudaDeviceProp deviceProps;

  checkCudaErrors(cudaGetDeviceProperties(&deviceProps, devID));
  printf("CUDA device [%s] has %d Multi-Processors, SM %d.%d\n",
         deviceProps.name, deviceProps.multiProcessorCount, deviceProps.major,
         deviceProps.minor);

  // Load image from disk
  float *hData = NULL;
  unsigned int width, height;
  char *imagePath = sdkFindFilePath(imageFilename, argv[0]);

  if (imagePath == NULL) {
    printf("Unable to source image input file: %s\n", imageFilename);
    exit(EXIT_FAILURE);
  }

  sdkLoadPGM(imagePath, &hData, &width, &height);

  unsigned int size = width * height * sizeof(float);
  printf("Loaded '%s', %d x %d pixels\n", imageFilename, width, height);

  // Load reference image from image (output)
  float *hDataRef = (float *)malloc(size);
  char *refPath = sdkFindFilePath(refFilename, argv[0]);

  if (refPath == NULL) {
    printf("Unable to find reference image file: %s\n", refFilename);
    exit(EXIT_FAILURE);
  }

  sdkLoadPGM(refPath, &hDataRef, &width, &height);

  // Allocate device memory for result
  float *dData = NULL;
  checkCudaErrors(cudaMalloc((void **)&dData, size));

  // Allocate array and copy image data
  cudaChannelFormatDesc channelDesc =
      cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
  cudaArray *cuArray;
  checkCudaErrors(cudaMallocArray(&cuArray, &channelDesc, width, height,
                                  cudaArraySurfaceLoadStore));

  dim3 dimBlock(8, 8, 1);
  dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

  cudaSurfaceObject_t outputSurface;
  cudaResourceDesc surfRes;
  memset(&surfRes, 0, sizeof(cudaResourceDesc));
  surfRes.resType = cudaResourceTypeArray;
  surfRes.res.array.array = cuArray;

  checkCudaErrors(cudaCreateSurfaceObject(&outputSurface, &surfRes));
#if 1
  checkCudaErrors(cudaMemcpy(dData, hData, size, cudaMemcpyHostToDevice));
  surfaceWriteKernel<<<dimGrid, dimBlock>>>(dData, width, height,
                                            outputSurface);
#else  // This is what differs from the example simpleTexture
  checkCudaErrors(
      cudaMemcpyToArray(cuArray, 0, 0, hData, size, cudaMemcpyHostToDevice));
#endif

  cudaTextureObject_t tex;
  cudaResourceDesc texRes;
  memset(&texRes, 0, sizeof(cudaResourceDesc));

  texRes.resType = cudaResourceTypeArray;
  texRes.res.array.array = cuArray;

  cudaTextureDesc texDescr;
  memset(&texDescr, 0, sizeof(cudaTextureDesc));

  texDescr.normalizedCoords = true;
  texDescr.filterMode = cudaFilterModeLinear;
  texDescr.addressMode[0] = cudaAddressModeWrap;
  texDescr.addressMode[1] = cudaAddressModeWrap;
  texDescr.readMode = cudaReadModeElementType;

  checkCudaErrors(cudaCreateTextureObject(&tex, &texRes, &texDescr, NULL));

  // Warmup
  transformKernel<<<dimGrid, dimBlock, 0>>>(dData, width, height, angle, tex);

  checkCudaErrors(cudaDeviceSynchronize());

  StopWatchInterface *timer = NULL;
  sdkCreateTimer(&timer);
  sdkStartTimer(&timer);

  // Execute the kernel
  transformKernel<<<dimGrid, dimBlock, 0>>>(dData, width, height, angle, tex);

  // Check if kernel execution generated an error
  getLastCudaError("Kernel execution failed");

  cudaDeviceSynchronize();
  sdkStopTimer(&timer);
  printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer));
  printf("%.2f Mpixels/sec\n",
         (width * height / (sdkGetTimerValue(&timer) / 1000.0f)) / 1e6);
  sdkDeleteTimer(&timer);

  // Allocate mem for the result on host side
  float *hOData = (float *)malloc(size);
  // copy result from device to host
  checkCudaErrors(cudaMemcpy(hOData, dData, size, cudaMemcpyDeviceToHost));

  // Write result to file
  char outputFilename[1024];
  strcpy(outputFilename, "output.pgm");
  sdkSavePGM("output.pgm", hOData, width, height);
  printf("Wrote '%s'\n", outputFilename);

  // Write regression file if necessary
  if (checkCmdLineFlag(argc, (const char **)argv, "regression")) {
    // Write file for regression test
    sdkWriteFile<float>("./data/regression.dat", hOData, width * height, 0.0f,
                        false);
  } else {
    // We need to reload the data from disk,
    // because it is inverted upon output
    sdkLoadPGM(outputFilename, &hOData, &width, &height);

    printf("Comparing files\n");
    printf("\toutput:    <%s>\n", outputFilename);
    printf("\treference: <%s>\n", refPath);
    testResult =
        compareData(hOData, hDataRef, width * height, MIN_EPSILON_ERROR, 0.0f);
  }

  checkCudaErrors(cudaDestroySurfaceObject(outputSurface));
  checkCudaErrors(cudaDestroyTextureObject(tex));
  checkCudaErrors(cudaFree(dData));
  checkCudaErrors(cudaFreeArray(cuArray));
  free(imagePath);
  free(refPath);
}