1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This sample is a templatized version of the template project.
* It also shows how to correctly templatize dynamically allocated shared
* memory arrays.
* Host code.
*/
// System includes
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <math.h>
// CUDA runtime
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <nvrtc_helper.h>
#ifndef MAX
#define MAX(a, b) (a > b ? a : b)
#endif
int g_TotalFailures = 0;
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
template <class T>
void runTest(int argc, char **argv, int len);
template <class T>
void computeGold(T *reference, T *idata, const unsigned int len) {
const T T_len = static_cast<T>(len);
for (unsigned int i = 0; i < len; ++i) {
reference[i] = idata[i] * T_len;
}
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf("> runTest<float,32>\n");
runTest<float>(argc, argv, 32);
printf("> runTest<int,64>\n");
runTest<int>(argc, argv, 64);
printf("\n[simpleTemplates_nvrtc] -> Test Results: %d Failures\n",
g_TotalFailures);
exit(g_TotalFailures == 0 ? EXIT_SUCCESS : EXIT_FAILURE);
}
// To completely templatize runTest (below) with cutil, we need to use
// template specialization to wrap up CUTIL's array comparison and file writing
// functions for different types.
// Here's the generic wrapper for cutCompare*
template <class T>
class ArrayComparator {
public:
bool compare(const T *reference, T *data, unsigned int len) {
fprintf(stderr,
"Error: no comparison function implemented for this type\n");
return false;
}
};
// Here's the specialization for ints:
template <>
class ArrayComparator<int> {
public:
bool compare(const int *reference, int *data, unsigned int len) {
return compareData(reference, data, len, 0.15f, 0.0f);
}
};
// Here's the specialization for floats:
template <>
class ArrayComparator<float> {
public:
bool compare(const float *reference, float *data, unsigned int len) {
return compareData(reference, data, len, 0.15f, 0.15f);
}
};
// Here's the generic wrapper for cutWriteFile*
template <class T>
class ArrayFileWriter {
public:
bool write(const char *filename, T *data, unsigned int len, float epsilon) {
fprintf(stderr,
"Error: no file write function implemented for this type\n");
return false;
}
};
// Here's the specialization for ints:
template <>
class ArrayFileWriter<int> {
public:
bool write(const char *filename, int *data, unsigned int len, float epsilon) {
return sdkWriteFile(filename, data, len, epsilon, false);
}
};
// Here's the specialization for floats:
template <>
class ArrayFileWriter<float> {
public:
bool write(const char *filename, float *data, unsigned int len,
float epsilon) {
return sdkWriteFile(filename, data, len, epsilon, false);
}
};
template <typename T>
CUfunction getKernel(CUmodule in);
template <>
CUfunction getKernel<int>(CUmodule in) {
CUfunction kernel_addr;
checkCudaErrors(cuModuleGetFunction(&kernel_addr, in, "testInt"));
return kernel_addr;
}
template <>
CUfunction getKernel<float>(CUmodule in) {
CUfunction kernel_addr;
checkCudaErrors(cuModuleGetFunction(&kernel_addr, in, "testFloat"));
return kernel_addr;
}
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test for CUDA
////////////////////////////////////////////////////////////////////////////////
static bool moduleLoaded = false;
CUmodule module;
char *cubin, *kernel_file;
size_t cubinSize;
template <class T>
void runTest(int argc, char **argv, int len) {
if (!moduleLoaded) {
kernel_file = sdkFindFilePath("simpleTemplates_kernel.cu", argv[0]);
compileFileToCUBIN(kernel_file, argc, argv, &cubin, &cubinSize, 0);
module = loadCUBIN(cubin, argc, argv);
moduleLoaded = true;
}
// create and start timer
StopWatchInterface *timer = NULL;
sdkCreateTimer(&timer);
// start the timer
sdkStartTimer(&timer);
unsigned int num_threads = len;
unsigned int mem_size = sizeof(float) * num_threads;
// allocate host memory
T *h_idata = (T *)malloc(mem_size);
// initialize the memory
for (unsigned int i = 0; i < num_threads; ++i) {
h_idata[i] = (T)i;
}
// allocate device memory
CUdeviceptr d_idata;
checkCudaErrors(cuMemAlloc(&d_idata, mem_size));
// copy host memory to device
checkCudaErrors(cuMemcpyHtoD(d_idata, h_idata, mem_size));
// allocate device memory for result
CUdeviceptr d_odata;
checkCudaErrors(cuMemAlloc(&d_odata, mem_size));
// setup execution parameters
dim3 grid(1, 1, 1);
dim3 threads(num_threads, 1, 1);
// execute the kernel
CUfunction kernel_addr = getKernel<T>(module);
void *arr[] = {(void *)&d_idata, (void *)&d_odata};
checkCudaErrors(
cuLaunchKernel(kernel_addr, grid.x, grid.y, grid.z, /* grid dim */
threads.x, threads.y, threads.z, /* block dim */
mem_size, 0, /* shared mem, stream */
&arr[0], /* arguments */
0));
// check if kernel execution generated and error
checkCudaErrors(cuCtxSynchronize());
// allocate mem for the result on host side
T *h_odata = (T *)malloc(mem_size);
// copy result from device to host
checkCudaErrors(cuMemcpyDtoH(h_odata, d_odata, sizeof(T) * num_threads));
sdkStopTimer(&timer);
printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer));
sdkDeleteTimer(&timer);
// compute reference solution
T *reference = (T *)malloc(mem_size);
computeGold<T>(reference, h_idata, num_threads);
ArrayComparator<T> comparator;
ArrayFileWriter<T> writer;
// check result
if (checkCmdLineFlag(argc, (const char **)argv, "regression")) {
// write file for regression test
writer.write("./data/regression.dat", h_odata, num_threads, 0.0f);
} else {
// custom output handling when no regression test running
// in this case check if the result is equivalent to the expected solution
bool res = comparator.compare(reference, h_odata, num_threads);
printf("Compare %s\n\n", (1 == res) ? "OK" : "MISMATCH");
g_TotalFailures += (1 != res);
}
// cleanup memory
free(h_idata);
free(h_odata);
free(reference);
checkCudaErrors(cuMemFree(d_idata));
checkCudaErrors(cuMemFree(d_odata));
}
|