1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample demonstrates how use texture fetches in CUDA
*
* This sample takes an input PGM image (image_filename) and generates
* an output PGM image (image_filename_out). This CUDA kernel performs
* a simple 2D transform (rotation) on the texture coordinates (u,v).
* The results between simpleTexture and simpleTextureDrv are identical.
* The main difference is the implementation. simpleTextureDrv makes calls
* to the CUDA driver API and demonstrates how to use cuModuleLoad to load
* the CUDA ptx (*.ptx) kernel just prior to kernel launch.
*
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <iostream>
#include <cstring>
// includes, CUDA
#include <cuda.h>
#include <builtin_types.h>
// includes, project
#include <helper_cuda_drvapi.h>
#include <helper_functions.h>
using namespace std;
const char *image_filename = "teapot512.pgm";
const char *ref_filename = "ref_rotated.pgm";
float angle = 0.5f; // angle to rotate image by (in radians)
#define MIN_EPSILON_ERROR 5e-3f
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
void runTest(int argc, char **argv);
extern "C" void computeGold(float *reference, float *idata,
const unsigned int len);
static CUresult initCUDA(int argc, char **argv, CUfunction *);
const char *sSDKsample = "simpleTextureDrv (Driver API)";
// define input fatbin file
#ifndef FATBIN_FILE
#define FATBIN_FILE "simpleTexture_kernel64.fatbin"
#endif
////////////////////////////////////////////////////////////////////////////////
// Globals
////////////////////////////////////////////////////////////////////////////////
CUdevice cuDevice;
CUcontext cuContext;
CUmodule cuModule;
void showHelp() {
printf("\n> [%s] Command line options\n", sSDKsample);
printf("\t-device=n (where n=0,1,2.... for the GPU device)\n\n");
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
if (checkCmdLineFlag(argc, (const char **)argv, "help")) {
showHelp();
return 0;
}
runTest(argc, argv);
}
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test for CUDA
////////////////////////////////////////////////////////////////////////////////
void runTest(int argc, char **argv) {
bool bTestResults = true;
// initialize CUDA
CUfunction transform = NULL;
if (initCUDA(argc, argv, &transform) != CUDA_SUCCESS) {
exit(EXIT_FAILURE);
}
// load image from disk
float *h_data = NULL;
unsigned int width, height;
char *image_path = sdkFindFilePath(image_filename, argv[0]);
if (image_path == NULL) {
printf("Unable to find image file: '%s'\n", image_filename);
exit(EXIT_FAILURE);
}
sdkLoadPGM(image_path, &h_data, &width, &height);
size_t size = width * height * sizeof(float);
printf("Loaded '%s', %d x %d pixels\n", image_filename, width, height);
// load reference image from image (output)
float *h_data_ref = (float *)malloc(size);
char *ref_path = sdkFindFilePath(ref_filename, argv[0]);
if (ref_path == NULL) {
printf("Unable to find reference file %s\n", ref_filename);
exit(EXIT_FAILURE);
}
sdkLoadPGM(ref_path, &h_data_ref, &width, &height);
// allocate device memory for result
CUdeviceptr d_data = (CUdeviceptr)NULL;
checkCudaErrors(cuMemAlloc(&d_data, size));
// allocate array and copy image data
CUarray cu_array;
CUDA_ARRAY_DESCRIPTOR desc;
desc.Format = CU_AD_FORMAT_FLOAT;
desc.NumChannels = 1;
desc.Width = width;
desc.Height = height;
checkCudaErrors(cuArrayCreate(&cu_array, &desc));
CUDA_MEMCPY2D copyParam;
memset(©Param, 0, sizeof(copyParam));
copyParam.dstMemoryType = CU_MEMORYTYPE_ARRAY;
copyParam.dstArray = cu_array;
copyParam.srcMemoryType = CU_MEMORYTYPE_HOST;
copyParam.srcHost = h_data;
copyParam.srcPitch = width * sizeof(float);
copyParam.WidthInBytes = copyParam.srcPitch;
copyParam.Height = height;
checkCudaErrors(cuMemcpy2D(©Param));
// set texture parameters
CUtexObject TexObject;
CUDA_RESOURCE_DESC ResDesc;
memset(&ResDesc, 0, sizeof(CUDA_RESOURCE_DESC));
ResDesc.resType = CU_RESOURCE_TYPE_ARRAY;
ResDesc.res.array.hArray = cu_array;
CUDA_TEXTURE_DESC TexDesc;
memset(&TexDesc, 0, sizeof(CUDA_TEXTURE_DESC));
TexDesc.addressMode[0] = CU_TR_ADDRESS_MODE_WRAP;
TexDesc.addressMode[1] = CU_TR_ADDRESS_MODE_WRAP;
TexDesc.addressMode[2] = CU_TR_ADDRESS_MODE_WRAP;
TexDesc.filterMode = CU_TR_FILTER_MODE_LINEAR;
TexDesc.flags = CU_TRSF_NORMALIZED_COORDINATES;
checkCudaErrors(cuTexObjectCreate(&TexObject, &ResDesc, &TexDesc, NULL));
// There are two ways to launch CUDA kernels via the Driver API.
// In this CUDA Sample, we illustrate both ways to pass parameters
// and specify parameters. By default we use the simpler method.
int block_size = 8;
StopWatchInterface *timer = NULL;
if (1) {
// This is the new CUDA 4.0 API for Kernel Parameter passing and Kernel
// Launching (simpler method)
void *args[5] = {&d_data, &width, &height, &angle, &TexObject};
checkCudaErrors(cuLaunchKernel(transform, (width / block_size),
(height / block_size), 1, block_size,
block_size, 1, 0, NULL, args, NULL));
checkCudaErrors(cuCtxSynchronize());
sdkCreateTimer(&timer);
sdkStartTimer(&timer);
// launch kernel again for performance measurement
checkCudaErrors(cuLaunchKernel(transform, (width / block_size),
(height / block_size), 1, block_size,
block_size, 1, 0, NULL, args, NULL));
} else {
// This is the new CUDA 4.0 API for Kernel Parameter passing and Kernel
// Launching (advanced method)
int offset = 0;
char argBuffer[256];
// pass in launch parameters (not actually de-referencing CUdeviceptr).
// CUdeviceptr is
// storing the value of the parameters
*((CUdeviceptr *)&argBuffer[offset]) = d_data;
offset += sizeof(d_data);
*((unsigned int *)&argBuffer[offset]) = width;
offset += sizeof(width);
*((unsigned int *)&argBuffer[offset]) = height;
offset += sizeof(height);
*((float *)&argBuffer[offset]) = angle;
offset += sizeof(angle);
*((CUtexObject *)&argBuffer[offset]) = TexObject;
offset += sizeof(TexObject);
void *kernel_launch_config[5] = {CU_LAUNCH_PARAM_BUFFER_POINTER, argBuffer,
CU_LAUNCH_PARAM_BUFFER_SIZE, &offset,
CU_LAUNCH_PARAM_END};
// new CUDA 4.0 Driver API Kernel launch call (warmup)
checkCudaErrors(cuLaunchKernel(
transform, (width / block_size), (height / block_size), 1, block_size,
block_size, 1, 0, NULL, NULL, (void **)&kernel_launch_config));
checkCudaErrors(cuCtxSynchronize());
sdkCreateTimer(&timer);
sdkStartTimer(&timer);
// launch kernel again for performance measurement
checkCudaErrors(cuLaunchKernel(
transform, (width / block_size), (height / block_size), 1, block_size,
block_size, 1, 0, 0, NULL, (void **)&kernel_launch_config));
}
checkCudaErrors(cuCtxSynchronize());
sdkStopTimer(&timer);
printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer));
printf("%.2f Mpixels/sec\n",
(width * height / (sdkGetTimerValue(&timer) / 1000.0f)) / 1e6);
sdkDeleteTimer(&timer);
// allocate mem for the result on host side
float *h_odata = (float *)malloc(size);
// copy result from device to host
checkCudaErrors(cuMemcpyDtoH(h_odata, d_data, size));
// write result to file
char output_filename[1024];
strcpy(output_filename, image_path);
strcpy(output_filename + strlen(image_path) - 4, "_out.pgm");
sdkSavePGM(output_filename, h_odata, width, height);
printf("Wrote '%s'\n", output_filename);
// write regression file if necessary
if (checkCmdLineFlag(argc, (const char **)argv, "regression")) {
// write file for regression test
sdkWriteFile<float>("./data/regression.dat", h_odata, width * height, 0.0f,
false);
} else {
// We need to reload the data from disk, because it is inverted upon output
sdkLoadPGM(output_filename, &h_odata, &width, &height);
printf("Comparing files\n");
printf("\toutput: <%s>\n", output_filename);
printf("\treference: <%s>\n", ref_path);
bTestResults = compareData(h_odata, h_data_ref, width * height,
MIN_EPSILON_ERROR, 0.15f);
}
// cleanup memory
checkCudaErrors(cuTexObjectDestroy(TexObject));
checkCudaErrors(cuMemFree(d_data));
checkCudaErrors(cuArrayDestroy(cu_array));
free(image_path);
free(ref_path);
checkCudaErrors(cuCtxDestroy(cuContext));
exit(bTestResults ? EXIT_SUCCESS : EXIT_FAILURE);
}
////////////////////////////////////////////////////////////////////////////////
//! This initializes CUDA, and loads the *.ptx CUDA module containing the
//! kernel function. After the module is loaded, cuModuleGetFunction
//! retrieves the CUDA function pointer "cuFunction"
////////////////////////////////////////////////////////////////////////////////
static CUresult initCUDA(int argc, char **argv, CUfunction *transform) {
CUfunction cuFunction = 0;
int major = 0, minor = 0, devID = 0;
char deviceName[100];
string module_path;
cuDevice = findCudaDeviceDRV(argc, (const char **)argv);
// get compute capabilities and the devicename
checkCudaErrors(cuDeviceGetAttribute(
&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevice));
checkCudaErrors(cuDeviceGetAttribute(
&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevice));
checkCudaErrors(cuDeviceGetName(deviceName, sizeof(deviceName), cuDevice));
printf("> GPU Device has SM %d.%d compute capability\n", major, minor);
checkCudaErrors(cuCtxCreate(&cuContext, 0, cuDevice));
// first search for the module_path before we try to load the results
std::ostringstream fatbin;
if (!findFatbinPath(FATBIN_FILE, module_path, argv, fatbin)) {
exit(EXIT_FAILURE);
} else {
printf("> initCUDA loading module: <%s>\n", module_path.c_str());
}
if (!fatbin.str().size()) {
printf("fatbin file empty. exiting..\n");
exit(EXIT_FAILURE);
}
// Create module from binary file (FATBIN)
checkCudaErrors(cuModuleLoadData(&cuModule, fatbin.str().c_str()));
checkCudaErrors(
cuModuleGetFunction(&cuFunction, cuModule, "transformKernel"));
*transform = cuFunction;
return CUDA_SUCCESS;
}
|