1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This sample queries the properties of the CUDA devices present
* in the system.
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cuda.h>
#include <helper_cuda_drvapi.h>
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
CUdevice dev;
int major = 0, minor = 0;
int deviceCount = 0;
char deviceName[256];
printf("%s Starting...\n\n", argv[0]);
// note your project will need to link with cuda.lib files on windows
printf("CUDA Device Query (Driver API) statically linked version \n");
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&deviceCount));
// This function call returns 0 if there are no CUDA capable devices.
if (deviceCount == 0) {
printf("There are no available device(s) that support CUDA\n");
} else {
printf("Detected %d CUDA Capable device(s)\n", deviceCount);
}
for (dev = 0; dev < deviceCount; ++dev) {
checkCudaErrors(cuDeviceGetAttribute(
&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, dev));
checkCudaErrors(cuDeviceGetAttribute(
&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, dev));
checkCudaErrors(cuDeviceGetName(deviceName, 256, dev));
printf("\nDevice %d: \"%s\"\n", dev, deviceName);
int driverVersion = 0;
checkCudaErrors(cuDriverGetVersion(&driverVersion));
printf(" CUDA Driver Version: %d.%d\n",
driverVersion / 1000, (driverVersion % 100) / 10);
printf(" CUDA Capability Major/Minor version number: %d.%d\n", major,
minor);
size_t totalGlobalMem;
checkCudaErrors(cuDeviceTotalMem(&totalGlobalMem, dev));
char msg[256];
SPRINTF(msg,
" Total amount of global memory: %.0f MBytes "
"(%llu bytes)\n",
(float)totalGlobalMem / 1048576.0f,
(unsigned long long)totalGlobalMem);
printf("%s", msg);
int multiProcessorCount;
getCudaAttribute<int>(&multiProcessorCount,
CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, dev);
printf(" (%2d) Multiprocessors, (%3d) CUDA Cores/MP: %d CUDA Cores\n",
multiProcessorCount, _ConvertSMVer2CoresDRV(major, minor),
_ConvertSMVer2CoresDRV(major, minor) * multiProcessorCount);
int clockRate;
getCudaAttribute<int>(&clockRate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, dev);
printf(
" GPU Max Clock rate: %.0f MHz (%0.2f "
"GHz)\n",
clockRate * 1e-3f, clockRate * 1e-6f);
int memoryClock;
getCudaAttribute<int>(&memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE,
dev);
printf(" Memory Clock rate: %.0f Mhz\n",
memoryClock * 1e-3f);
int memBusWidth;
getCudaAttribute<int>(&memBusWidth,
CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev);
printf(" Memory Bus Width: %d-bit\n",
memBusWidth);
int L2CacheSize;
getCudaAttribute<int>(&L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev);
if (L2CacheSize) {
printf(" L2 Cache Size: %d bytes\n",
L2CacheSize);
}
int maxTex1D, maxTex2D[2], maxTex3D[3];
getCudaAttribute<int>(&maxTex1D,
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH, dev);
getCudaAttribute<int>(&maxTex2D[0],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH, dev);
getCudaAttribute<int>(&maxTex2D[1],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT, dev);
getCudaAttribute<int>(&maxTex3D[0],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH, dev);
getCudaAttribute<int>(&maxTex3D[1],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT, dev);
getCudaAttribute<int>(&maxTex3D[2],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH, dev);
printf(
" Max Texture Dimension Sizes 1D=(%d) 2D=(%d, %d) "
"3D=(%d, %d, %d)\n",
maxTex1D, maxTex2D[0], maxTex2D[1], maxTex3D[0], maxTex3D[1],
maxTex3D[2]);
int maxTex1DLayered[2];
getCudaAttribute<int>(&maxTex1DLayered[0],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_WIDTH,
dev);
getCudaAttribute<int>(&maxTex1DLayered[1],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_LAYERS,
dev);
printf(
" Maximum Layered 1D Texture Size, (num) layers 1D=(%d), %d layers\n",
maxTex1DLayered[0], maxTex1DLayered[1]);
int maxTex2DLayered[3];
getCudaAttribute<int>(&maxTex2DLayered[0],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH,
dev);
getCudaAttribute<int>(&maxTex2DLayered[1],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT,
dev);
getCudaAttribute<int>(&maxTex2DLayered[2],
CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS,
dev);
printf(
" Maximum Layered 2D Texture Size, (num) layers 2D=(%d, %d), %d "
"layers\n",
maxTex2DLayered[0], maxTex2DLayered[1], maxTex2DLayered[2]);
int totalConstantMemory;
getCudaAttribute<int>(&totalConstantMemory,
CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY, dev);
printf(" Total amount of constant memory: %u bytes\n",
totalConstantMemory);
int sharedMemPerBlock;
getCudaAttribute<int>(&sharedMemPerBlock,
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK, dev);
printf(" Total amount of shared memory per block: %u bytes\n",
sharedMemPerBlock);
int regsPerBlock;
getCudaAttribute<int>(®sPerBlock,
CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK, dev);
printf(" Total number of registers available per block: %d\n",
regsPerBlock);
int warpSize;
getCudaAttribute<int>(&warpSize, CU_DEVICE_ATTRIBUTE_WARP_SIZE, dev);
printf(" Warp size: %d\n", warpSize);
int maxThreadsPerMultiProcessor;
getCudaAttribute<int>(&maxThreadsPerMultiProcessor,
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR,
dev);
printf(" Maximum number of threads per multiprocessor: %d\n",
maxThreadsPerMultiProcessor);
int maxThreadsPerBlock;
getCudaAttribute<int>(&maxThreadsPerBlock,
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, dev);
printf(" Maximum number of threads per block: %d\n",
maxThreadsPerBlock);
int blockDim[3];
getCudaAttribute<int>(&blockDim[0], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X,
dev);
getCudaAttribute<int>(&blockDim[1], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y,
dev);
getCudaAttribute<int>(&blockDim[2], CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z,
dev);
printf(" Max dimension size of a thread block (x,y,z): (%d, %d, %d)\n",
blockDim[0], blockDim[1], blockDim[2]);
int gridDim[3];
getCudaAttribute<int>(&gridDim[0], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, dev);
getCudaAttribute<int>(&gridDim[1], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, dev);
getCudaAttribute<int>(&gridDim[2], CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, dev);
printf(" Max dimension size of a grid size (x,y,z): (%d, %d, %d)\n",
gridDim[0], gridDim[1], gridDim[2]);
int textureAlign;
getCudaAttribute<int>(&textureAlign, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT,
dev);
printf(" Texture alignment: %u bytes\n",
textureAlign);
int memPitch;
getCudaAttribute<int>(&memPitch, CU_DEVICE_ATTRIBUTE_MAX_PITCH, dev);
printf(" Maximum memory pitch: %u bytes\n",
memPitch);
int gpuOverlap;
getCudaAttribute<int>(&gpuOverlap, CU_DEVICE_ATTRIBUTE_GPU_OVERLAP, dev);
int asyncEngineCount;
getCudaAttribute<int>(&asyncEngineCount,
CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT, dev);
printf(
" Concurrent copy and kernel execution: %s with %d copy "
"engine(s)\n",
(gpuOverlap ? "Yes" : "No"), asyncEngineCount);
int kernelExecTimeoutEnabled;
getCudaAttribute<int>(&kernelExecTimeoutEnabled,
CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT, dev);
printf(" Run time limit on kernels: %s\n",
kernelExecTimeoutEnabled ? "Yes" : "No");
int integrated;
getCudaAttribute<int>(&integrated, CU_DEVICE_ATTRIBUTE_INTEGRATED, dev);
printf(" Integrated GPU sharing Host Memory: %s\n",
integrated ? "Yes" : "No");
int canMapHostMemory;
getCudaAttribute<int>(&canMapHostMemory,
CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, dev);
printf(" Support host page-locked memory mapping: %s\n",
canMapHostMemory ? "Yes" : "No");
int concurrentKernels;
getCudaAttribute<int>(&concurrentKernels,
CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS, dev);
printf(" Concurrent kernel execution: %s\n",
concurrentKernels ? "Yes" : "No");
int surfaceAlignment;
getCudaAttribute<int>(&surfaceAlignment,
CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT, dev);
printf(" Alignment requirement for Surfaces: %s\n",
surfaceAlignment ? "Yes" : "No");
int eccEnabled;
getCudaAttribute<int>(&eccEnabled, CU_DEVICE_ATTRIBUTE_ECC_ENABLED, dev);
printf(" Device has ECC support: %s\n",
eccEnabled ? "Enabled" : "Disabled");
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
int tccDriver;
getCudaAttribute<int>(&tccDriver, CU_DEVICE_ATTRIBUTE_TCC_DRIVER, dev);
printf(" CUDA Device Driver Mode (TCC or WDDM): %s\n",
tccDriver ? "TCC (Tesla Compute Cluster Driver)"
: "WDDM (Windows Display Driver Model)");
#endif
int unifiedAddressing;
getCudaAttribute<int>(&unifiedAddressing,
CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING, dev);
printf(" Device supports Unified Addressing (UVA): %s\n",
unifiedAddressing ? "Yes" : "No");
int managedMemory;
getCudaAttribute<int>(&managedMemory, CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY,
dev);
printf(" Device supports Managed Memory: %s\n",
managedMemory ? "Yes" : "No");
int computePreemption;
getCudaAttribute<int>(&computePreemption,
CU_DEVICE_ATTRIBUTE_COMPUTE_PREEMPTION_SUPPORTED,
dev);
printf(" Device supports Compute Preemption: %s\n",
computePreemption ? "Yes" : "No");
int cooperativeLaunch;
getCudaAttribute<int>(&cooperativeLaunch,
CU_DEVICE_ATTRIBUTE_COOPERATIVE_LAUNCH, dev);
printf(" Supports Cooperative Kernel Launch: %s\n",
cooperativeLaunch ? "Yes" : "No");
int cooperativeMultiDevLaunch;
getCudaAttribute<int>(&cooperativeMultiDevLaunch,
CU_DEVICE_ATTRIBUTE_COOPERATIVE_MULTI_DEVICE_LAUNCH,
dev);
printf(" Supports MultiDevice Co-op Kernel Launch: %s\n",
cooperativeMultiDevLaunch ? "Yes" : "No");
int pciDomainID, pciBusID, pciDeviceID;
getCudaAttribute<int>(&pciDomainID, CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID, dev);
getCudaAttribute<int>(&pciBusID, CU_DEVICE_ATTRIBUTE_PCI_BUS_ID, dev);
getCudaAttribute<int>(&pciDeviceID, CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID, dev);
printf(" Device PCI Domain ID / Bus ID / location ID: %d / %d / %d\n",
pciDomainID, pciBusID, pciDeviceID);
const char *sComputeMode[] = {
"Default (multiple host threads can use ::cudaSetDevice() with device "
"simultaneously)",
"Exclusive (only one host thread in one process is able to use "
"::cudaSetDevice() with this device)",
"Prohibited (no host thread can use ::cudaSetDevice() with this "
"device)",
"Exclusive Process (many threads in one process is able to use "
"::cudaSetDevice() with this device)",
"Unknown", NULL};
int computeMode;
getCudaAttribute<int>(&computeMode, CU_DEVICE_ATTRIBUTE_COMPUTE_MODE, dev);
printf(" Compute Mode:\n");
printf(" < %s >\n", sComputeMode[computeMode]);
}
// If there are 2 or more GPUs, query to determine whether RDMA is supported
if (deviceCount >= 2) {
int gpuid[64]; // we want to find the first two GPUs that can support P2P
int gpu_p2p_count = 0;
int tccDriver = 0;
for (int i = 0; i < deviceCount; i++) {
checkCudaErrors(cuDeviceGetAttribute(
&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, i));
checkCudaErrors(cuDeviceGetAttribute(
&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, i));
getCudaAttribute<int>(&tccDriver, CU_DEVICE_ATTRIBUTE_TCC_DRIVER, i);
// Only boards based on Fermi or later can support P2P
if ((major >= 2)
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
// on Windows (64-bit), the Tesla Compute Cluster driver for windows
// must be enabled to support this
&& tccDriver
#endif
) {
// This is an array of P2P capable GPUs
gpuid[gpu_p2p_count++] = i;
}
}
// Show all the combinations of support P2P GPUs
int can_access_peer;
char deviceName0[256], deviceName1[256];
if (gpu_p2p_count >= 2) {
for (int i = 0; i < gpu_p2p_count; i++) {
for (int j = 0; j < gpu_p2p_count; j++) {
if (gpuid[i] == gpuid[j]) {
continue;
}
checkCudaErrors(
cuDeviceCanAccessPeer(&can_access_peer, gpuid[i], gpuid[j]));
checkCudaErrors(cuDeviceGetName(deviceName0, 256, gpuid[i]));
checkCudaErrors(cuDeviceGetName(deviceName1, 256, gpuid[j]));
printf(
"> Peer-to-Peer (P2P) access from %s (GPU%d) -> %s (GPU%d) : "
"%s\n",
deviceName0, gpuid[i], deviceName1, gpuid[j],
can_access_peer ? "Yes" : "No");
}
}
}
}
printf("Result = PASS\n");
exit(EXIT_SUCCESS);
}
|