1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <helper_cuda.h>
#include "FunctionPointers_kernels.h"
// Texture object for reading image
cudaTextureObject_t tex;
extern __shared__ unsigned char LocalBlock[];
static cudaArray *array = NULL;
#define RADIUS 1
// pixel value used for thresholding function,
// works well with sample image 'teapot512'
#define THRESHOLD 150.0f
#ifdef FIXED_BLOCKWIDTH
#define BlockWidth 80
#define SharedPitch 384
#endif
// A function pointer can be declared explicitly like this line:
//__device__ unsigned char (*pointFunction)(unsigned char, float ) = NULL;
// or by using typedef's like below:
typedef unsigned char (*blockFunction_t)(unsigned char, unsigned char,
unsigned char, unsigned char,
unsigned char, unsigned char,
unsigned char, unsigned char,
unsigned char, float);
typedef unsigned char (*pointFunction_t)(unsigned char, float);
__device__ blockFunction_t blockFunction;
__device__ unsigned char ComputeSobel(unsigned char ul, // upper left
unsigned char um, // upper middle
unsigned char ur, // upper right
unsigned char ml, // middle left
unsigned char mm, // middle (unused)
unsigned char mr, // middle right
unsigned char ll, // lower left
unsigned char lm, // lower middle
unsigned char lr, // lower right
float fScale) {
short Horz = ur + 2 * mr + lr - ul - 2 * ml - ll;
short Vert = ul + 2 * um + ur - ll - 2 * lm - lr;
short Sum = (short)(fScale * (abs((int)Horz) + abs((int)Vert)));
return (unsigned char)((Sum < 0) ? 0 : ((Sum > 255) ? 255 : Sum));
}
// define a function pointer and initialize to NULL
__device__ unsigned char (*varFunction)(unsigned char, unsigned char,
unsigned char, unsigned char,
unsigned char, unsigned char,
unsigned char, unsigned char,
unsigned char, float x) = NULL;
__device__ unsigned char ComputeBox(unsigned char ul, // upper left
unsigned char um, // upper middle
unsigned char ur, // upper right
unsigned char ml, // middle left
unsigned char mm, // middle...middle
unsigned char mr, // middle right
unsigned char ll, // lower left
unsigned char lm, // lower middle
unsigned char lr, // lower right
float fscale) {
short Sum = (short)(ul + um + ur + ml + mm + mr + ll + lm + lr) / 9;
Sum *= fscale;
return (unsigned char)((Sum < 0) ? 0 : ((Sum > 255) ? 255 : Sum));
}
__device__ unsigned char Threshold(unsigned char in, float thresh) {
if (in > thresh) {
return 0xFF;
} else {
return 0;
}
}
// Declare function tables, one for the point function chosen, one for the
// block function chosen. The number of entries is determined by the
// enum in FunctionPointers_kernels.h
__device__ blockFunction_t blockFunction_table[LAST_BLOCK_FILTER];
__device__ pointFunction_t pointFunction_table[LAST_POINT_FILTER];
// Declare device side function pointers. We retrieve them later with
// cudaMemcpyFromSymbol to set our function tables above in some
// particular order specified at runtime.
__device__ blockFunction_t pComputeSobel = ComputeSobel;
__device__ blockFunction_t pComputeBox = ComputeBox;
__device__ pointFunction_t pComputeThreshold = Threshold;
// Allocate host side tables to mirror the device side, and later, we
// fill these tables with the function pointers. This lets us send
// the pointers to the kernel on invocation, as a method of choosing
// which function to run.
blockFunction_t h_blockFunction_table[2];
pointFunction_t h_pointFunction_table[2];
// Perform a filter operation on the data, using shared memory
// The actual operation performed is
// determined by the function pointer "blockFunction" and selected
// by the integer argument "blockOperation" and has access
// to an apron around the current pixel being processed.
// Following the block operation, a per-pixel operation,
// pointed to by pPointFunction is performed before the final
// pixel is produced.
__global__ void SobelShared(uchar4 *pSobelOriginal, unsigned short SobelPitch,
#ifndef FIXED_BLOCKWIDTH
short BlockWidth, short SharedPitch,
#endif
short w, short h, float fScale, int blockOperation,
pointFunction_t pPointFunction,
cudaTextureObject_t tex) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
short u = 4 * blockIdx.x * BlockWidth;
short v = blockIdx.y * blockDim.y + threadIdx.y;
short ib;
int SharedIdx = threadIdx.y * SharedPitch;
for (ib = threadIdx.x; ib < BlockWidth + 2 * RADIUS; ib += blockDim.x) {
LocalBlock[SharedIdx + 4 * ib + 0] = tex2D<unsigned char>(
tex, (float)(u + 4 * ib - RADIUS + 0), (float)(v - RADIUS));
LocalBlock[SharedIdx + 4 * ib + 1] = tex2D<unsigned char>(
tex, (float)(u + 4 * ib - RADIUS + 1), (float)(v - RADIUS));
LocalBlock[SharedIdx + 4 * ib + 2] = tex2D<unsigned char>(
tex, (float)(u + 4 * ib - RADIUS + 2), (float)(v - RADIUS));
LocalBlock[SharedIdx + 4 * ib + 3] = tex2D<unsigned char>(
tex, (float)(u + 4 * ib - RADIUS + 3), (float)(v - RADIUS));
}
if (threadIdx.y < RADIUS * 2) {
//
// copy trailing RADIUS*2 rows of pixels into shared
//
SharedIdx = (blockDim.y + threadIdx.y) * SharedPitch;
for (ib = threadIdx.x; ib < BlockWidth + 2 * RADIUS; ib += blockDim.x) {
LocalBlock[SharedIdx + 4 * ib + 0] =
tex2D<unsigned char>(tex, (float)(u + 4 * ib - RADIUS + 0),
(float)(v + blockDim.y - RADIUS));
LocalBlock[SharedIdx + 4 * ib + 1] =
tex2D<unsigned char>(tex, (float)(u + 4 * ib - RADIUS + 1),
(float)(v + blockDim.y - RADIUS));
LocalBlock[SharedIdx + 4 * ib + 2] =
tex2D<unsigned char>(tex, (float)(u + 4 * ib - RADIUS + 2),
(float)(v + blockDim.y - RADIUS));
LocalBlock[SharedIdx + 4 * ib + 3] =
tex2D<unsigned char>(tex, (float)(u + 4 * ib - RADIUS + 3),
(float)(v + blockDim.y - RADIUS));
}
}
cg::sync(cta);
u >>= 2; // index as uchar4 from here
uchar4 *pSobel = (uchar4 *)(((char *)pSobelOriginal) + v * SobelPitch);
SharedIdx = threadIdx.y * SharedPitch;
blockFunction = blockFunction_table[blockOperation];
for (ib = threadIdx.x; ib < BlockWidth; ib += blockDim.x) {
uchar4 out;
unsigned char pix00 = LocalBlock[SharedIdx + 4 * ib + 0 * SharedPitch + 0];
unsigned char pix01 = LocalBlock[SharedIdx + 4 * ib + 0 * SharedPitch + 1];
unsigned char pix02 = LocalBlock[SharedIdx + 4 * ib + 0 * SharedPitch + 2];
unsigned char pix10 = LocalBlock[SharedIdx + 4 * ib + 1 * SharedPitch + 0];
unsigned char pix11 = LocalBlock[SharedIdx + 4 * ib + 1 * SharedPitch + 1];
unsigned char pix12 = LocalBlock[SharedIdx + 4 * ib + 1 * SharedPitch + 2];
unsigned char pix20 = LocalBlock[SharedIdx + 4 * ib + 2 * SharedPitch + 0];
unsigned char pix21 = LocalBlock[SharedIdx + 4 * ib + 2 * SharedPitch + 1];
unsigned char pix22 = LocalBlock[SharedIdx + 4 * ib + 2 * SharedPitch + 2];
out.x = (*blockFunction)(pix00, pix01, pix02, pix10, pix11, pix12, pix20,
pix21, pix22, fScale);
pix00 = LocalBlock[SharedIdx + 4 * ib + 0 * SharedPitch + 3];
pix10 = LocalBlock[SharedIdx + 4 * ib + 1 * SharedPitch + 3];
pix20 = LocalBlock[SharedIdx + 4 * ib + 2 * SharedPitch + 3];
out.y = (*blockFunction)(pix01, pix02, pix00, pix11, pix12, pix10, pix21,
pix22, pix20, fScale);
pix01 = LocalBlock[SharedIdx + 4 * ib + 0 * SharedPitch + 4];
pix11 = LocalBlock[SharedIdx + 4 * ib + 1 * SharedPitch + 4];
pix21 = LocalBlock[SharedIdx + 4 * ib + 2 * SharedPitch + 4];
out.z = (*blockFunction)(pix02, pix00, pix01, pix12, pix10, pix11, pix22,
pix20, pix21, fScale);
pix02 = LocalBlock[SharedIdx + 4 * ib + 0 * SharedPitch + 5];
pix12 = LocalBlock[SharedIdx + 4 * ib + 1 * SharedPitch + 5];
pix22 = LocalBlock[SharedIdx + 4 * ib + 2 * SharedPitch + 5];
out.w = (*blockFunction)(pix00, pix01, pix02, pix10, pix11, pix12, pix20,
pix21, pix22, fScale);
if (pPointFunction != NULL) {
out.x = (*pPointFunction)(out.x, THRESHOLD);
out.y = (*pPointFunction)(out.y, THRESHOLD);
out.z = (*pPointFunction)(out.z, THRESHOLD);
out.w = (*pPointFunction)(out.w, THRESHOLD);
}
if (u + ib < w / 4 && v < h) {
pSobel[u + ib] = out;
}
}
cg::sync(cta);
}
__global__ void SobelCopyImage(Pixel *pSobelOriginal, unsigned int Pitch, int w,
int h, float fscale, cudaTextureObject_t tex) {
unsigned char *pSobel =
(unsigned char *)(((char *)pSobelOriginal) + blockIdx.x * Pitch);
for (int i = threadIdx.x; i < w; i += blockDim.x) {
pSobel[i] = min(
max((tex2D<unsigned char>(tex, (float)i, (float)blockIdx.x) * fscale),
0.f),
255.f);
}
}
// Perform block and pointer filtering using texture lookups.
// The block and point operations are determined by the
// input argument (see comment above for "SobelShared" function)
__global__ void SobelTex(Pixel *pSobelOriginal, unsigned int Pitch, int w,
int h, float fScale, int blockOperation,
pointFunction_t pPointOperation,
cudaTextureObject_t tex) {
unsigned char *pSobel =
(unsigned char *)(((char *)pSobelOriginal) + blockIdx.x * Pitch);
unsigned char tmp = 0;
for (int i = threadIdx.x; i < w; i += blockDim.x) {
unsigned char pix00 =
tex2D<unsigned char>(tex, (float)i - 1, (float)blockIdx.x - 1);
unsigned char pix01 =
tex2D<unsigned char>(tex, (float)i + 0, (float)blockIdx.x - 1);
unsigned char pix02 =
tex2D<unsigned char>(tex, (float)i + 1, (float)blockIdx.x - 1);
unsigned char pix10 =
tex2D<unsigned char>(tex, (float)i - 1, (float)blockIdx.x + 0);
unsigned char pix11 =
tex2D<unsigned char>(tex, (float)i + 0, (float)blockIdx.x + 0);
unsigned char pix12 =
tex2D<unsigned char>(tex, (float)i + 1, (float)blockIdx.x + 0);
unsigned char pix20 =
tex2D<unsigned char>(tex, (float)i - 1, (float)blockIdx.x + 1);
unsigned char pix21 =
tex2D<unsigned char>(tex, (float)i + 0, (float)blockIdx.x + 1);
unsigned char pix22 =
tex2D<unsigned char>(tex, (float)i + 1, (float)blockIdx.x + 1);
tmp = (*(blockFunction_table[blockOperation]))(
pix00, pix01, pix02, pix10, pix11, pix12, pix20, pix21, pix22, fScale);
if (pPointOperation != NULL) {
tmp = (*pPointOperation)(tmp, 150.0);
}
pSobel[i] = tmp;
}
}
extern "C" void setupTexture(int iw, int ih, Pixel *data, int Bpp) {
cudaChannelFormatDesc desc;
if (Bpp == 1) {
desc = cudaCreateChannelDesc<unsigned char>();
} else {
desc = cudaCreateChannelDesc<uchar4>();
}
checkCudaErrors(cudaMallocArray(&array, &desc, iw, ih));
checkCudaErrors(cudaMemcpy2DToArray(
array, 0, 0, data, iw * Bpp * sizeof(Pixel), iw * Bpp * sizeof(Pixel), ih,
cudaMemcpyHostToDevice));
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = array;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
checkCudaErrors(cudaCreateTextureObject(&tex, &texRes, &texDescr, NULL));
}
extern "C" void deleteTexture(void) {
checkCudaErrors(cudaFreeArray(array));
checkCudaErrors(cudaDestroyTextureObject(tex));
}
// Copy the pointers from the function tables to the host side
void setupFunctionTables() {
// Dynamically assign the function table.
// Copy the function pointers to their appropriate locations according to the
// enum
checkCudaErrors(cudaMemcpyFromSymbol(&h_blockFunction_table[SOBEL_FILTER],
pComputeSobel, sizeof(blockFunction_t)));
checkCudaErrors(cudaMemcpyFromSymbol(&h_blockFunction_table[BOX_FILTER],
pComputeBox, sizeof(blockFunction_t)));
// do the same for the point function, where the 2nd function is NULL ("no-op"
// filter, skipped in kernel code)
checkCudaErrors(cudaMemcpyFromSymbol(&h_pointFunction_table[THRESHOLD_FILTER],
pComputeThreshold,
sizeof(pointFunction_t)));
h_pointFunction_table[NULL_FILTER] = NULL;
// now copy the function tables back to the device, so if we wish we can use
// an index into the table to choose them
// We have now set the order in the function table according to our enum.
checkCudaErrors(
cudaMemcpyToSymbol(blockFunction_table, h_blockFunction_table,
sizeof(blockFunction_t) * LAST_BLOCK_FILTER));
checkCudaErrors(
cudaMemcpyToSymbol(pointFunction_table, h_pointFunction_table,
sizeof(pointFunction_t) * LAST_POINT_FILTER));
}
// Wrapper for the __global__ call that sets up the texture and threads
// Below two methods for selecting the image processing function to run are
// shown.
// BlockOperation is an integer kernel argument used as an index into the
// blockFunction_table on the device side
// pPointOp is itself a function pointer passed as a kernel argument, retrieved
// from a host side copy of the function table
extern "C" void sobelFilter(Pixel *odata, int iw, int ih,
enum SobelDisplayMode mode, float fScale,
int blockOperation, int pointOperation) {
pointFunction_t pPointOp = h_pointFunction_table[pointOperation];
switch (mode) {
case SOBELDISPLAY_IMAGE:
SobelCopyImage<<<ih, 384>>>(odata, iw, iw, ih, fScale, tex);
break;
case SOBELDISPLAY_SOBELTEX:
SobelTex<<<ih, 384>>>(odata, iw, iw, ih, fScale, blockOperation, pPointOp,
tex);
break;
case SOBELDISPLAY_SOBELSHARED: {
dim3 threads(16, 4);
#ifndef FIXED_BLOCKWIDTH
int BlockWidth = 80; // must be divisible by 16 for coalescing
#endif
dim3 blocks = dim3(iw / (4 * BlockWidth) + (0 != iw % (4 * BlockWidth)),
ih / threads.y + (0 != ih % threads.y));
int SharedPitch = ~0x3f & (4 * (BlockWidth + 2 * RADIUS) + 0x3f);
int sharedMem = SharedPitch * (threads.y + 2 * RADIUS);
// for the shared kernel, width must be divisible by 4
iw &= ~3;
SobelShared<<<blocks, threads, sharedMem>>>(
(uchar4 *)odata, iw,
#ifndef FIXED_BLOCKWIDTH
BlockWidth, SharedPitch,
#endif
iw, ih, fScale, blockOperation, pPointOp, tex);
} break;
}
}
|