1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <helper_cuda.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include "convolutionSeparable_common.h"
////////////////////////////////////////////////////////////////////////////////
// Convolution kernel storage
////////////////////////////////////////////////////////////////////////////////
__constant__ float c_Kernel[KERNEL_LENGTH];
extern "C" void setConvolutionKernel(float *h_Kernel) {
cudaMemcpyToSymbol(c_Kernel, h_Kernel, KERNEL_LENGTH * sizeof(float));
}
////////////////////////////////////////////////////////////////////////////////
// Row convolution filter
////////////////////////////////////////////////////////////////////////////////
#define ROWS_BLOCKDIM_X 16
#define ROWS_BLOCKDIM_Y 4
#define ROWS_RESULT_STEPS 8
#define ROWS_HALO_STEPS 1
__global__ void convolutionRowsKernel(float *d_Dst, float *d_Src, int imageW,
int imageH, int pitch) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float
s_Data[ROWS_BLOCKDIM_Y][(ROWS_RESULT_STEPS + 2 * ROWS_HALO_STEPS) *
ROWS_BLOCKDIM_X];
// Offset to the left halo edge
const int baseX =
(blockIdx.x * ROWS_RESULT_STEPS - ROWS_HALO_STEPS) * ROWS_BLOCKDIM_X +
threadIdx.x;
const int baseY = blockIdx.y * ROWS_BLOCKDIM_Y + threadIdx.y;
d_Src += baseY * pitch + baseX;
d_Dst += baseY * pitch + baseX;
// Load main data
#pragma unroll
for (int i = ROWS_HALO_STEPS; i < ROWS_HALO_STEPS + ROWS_RESULT_STEPS; i++) {
s_Data[threadIdx.y][threadIdx.x + i * ROWS_BLOCKDIM_X] =
d_Src[i * ROWS_BLOCKDIM_X];
}
// Load left halo
#pragma unroll
for (int i = 0; i < ROWS_HALO_STEPS; i++) {
s_Data[threadIdx.y][threadIdx.x + i * ROWS_BLOCKDIM_X] =
(baseX >= -i * ROWS_BLOCKDIM_X) ? d_Src[i * ROWS_BLOCKDIM_X] : 0;
}
// Load right halo
#pragma unroll
for (int i = ROWS_HALO_STEPS + ROWS_RESULT_STEPS;
i < ROWS_HALO_STEPS + ROWS_RESULT_STEPS + ROWS_HALO_STEPS; i++) {
s_Data[threadIdx.y][threadIdx.x + i * ROWS_BLOCKDIM_X] =
(imageW - baseX > i * ROWS_BLOCKDIM_X) ? d_Src[i * ROWS_BLOCKDIM_X] : 0;
}
// Compute and store results
cg::sync(cta);
#pragma unroll
for (int i = ROWS_HALO_STEPS; i < ROWS_HALO_STEPS + ROWS_RESULT_STEPS; i++) {
float sum = 0;
#pragma unroll
for (int j = -KERNEL_RADIUS; j <= KERNEL_RADIUS; j++) {
sum += c_Kernel[KERNEL_RADIUS - j] *
s_Data[threadIdx.y][threadIdx.x + i * ROWS_BLOCKDIM_X + j];
}
d_Dst[i * ROWS_BLOCKDIM_X] = sum;
}
}
extern "C" void convolutionRowsGPU(float *d_Dst, float *d_Src, int imageW,
int imageH) {
assert(ROWS_BLOCKDIM_X * ROWS_HALO_STEPS >= KERNEL_RADIUS);
assert(imageW % (ROWS_RESULT_STEPS * ROWS_BLOCKDIM_X) == 0);
assert(imageH % ROWS_BLOCKDIM_Y == 0);
dim3 blocks(imageW / (ROWS_RESULT_STEPS * ROWS_BLOCKDIM_X),
imageH / ROWS_BLOCKDIM_Y);
dim3 threads(ROWS_BLOCKDIM_X, ROWS_BLOCKDIM_Y);
convolutionRowsKernel<<<blocks, threads>>>(d_Dst, d_Src, imageW, imageH,
imageW);
getLastCudaError("convolutionRowsKernel() execution failed\n");
}
////////////////////////////////////////////////////////////////////////////////
// Column convolution filter
////////////////////////////////////////////////////////////////////////////////
#define COLUMNS_BLOCKDIM_X 16
#define COLUMNS_BLOCKDIM_Y 8
#define COLUMNS_RESULT_STEPS 8
#define COLUMNS_HALO_STEPS 1
__global__ void convolutionColumnsKernel(float *d_Dst, float *d_Src, int imageW,
int imageH, int pitch) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ float s_Data[COLUMNS_BLOCKDIM_X][(COLUMNS_RESULT_STEPS +
2 * COLUMNS_HALO_STEPS) *
COLUMNS_BLOCKDIM_Y +
1];
// Offset to the upper halo edge
const int baseX = blockIdx.x * COLUMNS_BLOCKDIM_X + threadIdx.x;
const int baseY = (blockIdx.y * COLUMNS_RESULT_STEPS - COLUMNS_HALO_STEPS) *
COLUMNS_BLOCKDIM_Y +
threadIdx.y;
d_Src += baseY * pitch + baseX;
d_Dst += baseY * pitch + baseX;
// Main data
#pragma unroll
for (int i = COLUMNS_HALO_STEPS;
i < COLUMNS_HALO_STEPS + COLUMNS_RESULT_STEPS; i++) {
s_Data[threadIdx.x][threadIdx.y + i * COLUMNS_BLOCKDIM_Y] =
d_Src[i * COLUMNS_BLOCKDIM_Y * pitch];
}
// Upper halo
#pragma unroll
for (int i = 0; i < COLUMNS_HALO_STEPS; i++) {
s_Data[threadIdx.x][threadIdx.y + i * COLUMNS_BLOCKDIM_Y] =
(baseY >= -i * COLUMNS_BLOCKDIM_Y)
? d_Src[i * COLUMNS_BLOCKDIM_Y * pitch]
: 0;
}
// Lower halo
#pragma unroll
for (int i = COLUMNS_HALO_STEPS + COLUMNS_RESULT_STEPS;
i < COLUMNS_HALO_STEPS + COLUMNS_RESULT_STEPS + COLUMNS_HALO_STEPS;
i++) {
s_Data[threadIdx.x][threadIdx.y + i * COLUMNS_BLOCKDIM_Y] =
(imageH - baseY > i * COLUMNS_BLOCKDIM_Y)
? d_Src[i * COLUMNS_BLOCKDIM_Y * pitch]
: 0;
}
// Compute and store results
cg::sync(cta);
#pragma unroll
for (int i = COLUMNS_HALO_STEPS;
i < COLUMNS_HALO_STEPS + COLUMNS_RESULT_STEPS; i++) {
float sum = 0;
#pragma unroll
for (int j = -KERNEL_RADIUS; j <= KERNEL_RADIUS; j++) {
sum += c_Kernel[KERNEL_RADIUS - j] *
s_Data[threadIdx.x][threadIdx.y + i * COLUMNS_BLOCKDIM_Y + j];
}
d_Dst[i * COLUMNS_BLOCKDIM_Y * pitch] = sum;
}
}
extern "C" void convolutionColumnsGPU(float *d_Dst, float *d_Src, int imageW,
int imageH) {
assert(COLUMNS_BLOCKDIM_Y * COLUMNS_HALO_STEPS >= KERNEL_RADIUS);
assert(imageW % COLUMNS_BLOCKDIM_X == 0);
assert(imageH % (COLUMNS_RESULT_STEPS * COLUMNS_BLOCKDIM_Y) == 0);
dim3 blocks(imageW / COLUMNS_BLOCKDIM_X,
imageH / (COLUMNS_RESULT_STEPS * COLUMNS_BLOCKDIM_Y));
dim3 threads(COLUMNS_BLOCKDIM_X, COLUMNS_BLOCKDIM_Y);
convolutionColumnsKernel<<<blocks, threads>>>(d_Dst, d_Src, imageW, imageH,
imageW);
getLastCudaError("convolutionColumnsKernel() execution failed\n");
}
|