1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <helper_cuda.h>
#include "convolutionTexture_common.h"
////////////////////////////////////////////////////////////////////////////////
// GPU-specific defines
////////////////////////////////////////////////////////////////////////////////
// Maps to a single instruction on G8x / G9x / G10x
#define IMAD(a, b, c) (__mul24((a), (b)) + (c))
// Use unrolled innermost convolution loop
#define UNROLL_INNER 1
// Round a / b to nearest higher integer value
inline int iDivUp(int a, int b) { return (a % b != 0) ? (a / b + 1) : (a / b); }
// Align a to nearest higher multiple of b
inline int iAlignUp(int a, int b) { return (a % b != 0) ? (a - a % b + b) : a; }
////////////////////////////////////////////////////////////////////////////////
// Convolution kernel and input array storage
////////////////////////////////////////////////////////////////////////////////
__constant__ float c_Kernel[KERNEL_LENGTH];
extern "C" void setConvolutionKernel(float *h_Kernel) {
cudaMemcpyToSymbol(c_Kernel, h_Kernel, KERNEL_LENGTH * sizeof(float));
}
////////////////////////////////////////////////////////////////////////////////
// Loop unrolling templates, needed for best performance
////////////////////////////////////////////////////////////////////////////////
template <int i>
__device__ float convolutionRow(float x, float y, cudaTextureObject_t texSrc) {
return tex2D<float>(texSrc, x + (float)(KERNEL_RADIUS - i), y) * c_Kernel[i] +
convolutionRow<i - 1>(x, y, texSrc);
}
template <>
__device__ float convolutionRow<-1>(float x, float y,
cudaTextureObject_t texSrc) {
return 0;
}
template <int i>
__device__ float convolutionColumn(float x, float y,
cudaTextureObject_t texSrc) {
return tex2D<float>(texSrc, x, y + (float)(KERNEL_RADIUS - i)) * c_Kernel[i] +
convolutionColumn<i - 1>(x, y, texSrc);
}
template <>
__device__ float convolutionColumn<-1>(float x, float y,
cudaTextureObject_t texSrc) {
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// Row convolution filter
////////////////////////////////////////////////////////////////////////////////
__global__ void convolutionRowsKernel(float *d_Dst, int imageW, int imageH,
cudaTextureObject_t texSrc) {
const int ix = IMAD(blockDim.x, blockIdx.x, threadIdx.x);
const int iy = IMAD(blockDim.y, blockIdx.y, threadIdx.y);
const float x = (float)ix + 0.5f;
const float y = (float)iy + 0.5f;
if (ix >= imageW || iy >= imageH) {
return;
}
float sum = 0;
#if (UNROLL_INNER)
sum = convolutionRow<2 * KERNEL_RADIUS>(x, y, texSrc);
#else
for (int k = -KERNEL_RADIUS; k <= KERNEL_RADIUS; k++) {
sum += tex2D<float>(texSrc, x + (float)k, y) * c_Kernel[KERNEL_RADIUS - k];
}
#endif
d_Dst[IMAD(iy, imageW, ix)] = sum;
}
extern "C" void convolutionRowsGPU(float *d_Dst, cudaArray *a_Src, int imageW,
int imageH, cudaTextureObject_t texSrc) {
dim3 threads(16, 12);
dim3 blocks(iDivUp(imageW, threads.x), iDivUp(imageH, threads.y));
convolutionRowsKernel<<<blocks, threads>>>(d_Dst, imageW, imageH, texSrc);
getLastCudaError("convolutionRowsKernel() execution failed\n");
}
////////////////////////////////////////////////////////////////////////////////
// Column convolution filter
////////////////////////////////////////////////////////////////////////////////
__global__ void convolutionColumnsKernel(float *d_Dst, int imageW, int imageH,
cudaTextureObject_t texSrc) {
const int ix = IMAD(blockDim.x, blockIdx.x, threadIdx.x);
const int iy = IMAD(blockDim.y, blockIdx.y, threadIdx.y);
const float x = (float)ix + 0.5f;
const float y = (float)iy + 0.5f;
if (ix >= imageW || iy >= imageH) {
return;
}
float sum = 0;
#if (UNROLL_INNER)
sum = convolutionColumn<2 * KERNEL_RADIUS>(x, y, texSrc);
#else
for (int k = -KERNEL_RADIUS; k <= KERNEL_RADIUS; k++) {
sum += tex2D<float>(texSrc, x, y + (float)k) * c_Kernel[KERNEL_RADIUS - k];
}
#endif
d_Dst[IMAD(iy, imageW, ix)] = sum;
}
extern "C" void convolutionColumnsGPU(float *d_Dst, cudaArray *a_Src,
int imageW, int imageH,
cudaTextureObject_t texSrc) {
dim3 threads(16, 12);
dim3 blocks(iDivUp(imageW, threads.x), iDivUp(imageH, threads.y));
convolutionColumnsKernel<<<blocks, threads>>>(d_Dst, imageW, imageH, texSrc);
getLastCudaError("convolutionColumnsKernel() execution failed\n");
}
|