1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Determine eigenvalues for large matrices for intervals that contained after
* the first step one eigenvalue
*/
#ifndef _BISECT_KERNEL_LARGE_ONEI_H_
#define _BISECT_KERNEL_LARGE_ONEI_H_
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
// includes, project
#include "config.h"
#include "util.h"
// additional kernel
#include "bisect_util.cu"
////////////////////////////////////////////////////////////////////////////////
//! Determine eigenvalues for large matrices for intervals that after
//! the first step contained one eigenvalue
//! @param g_d diagonal elements of symmetric, tridiagonal matrix
//! @param g_s superdiagonal elements of symmetric, tridiagonal matrix
//! @param n matrix size
//! @param num_intervals total number of intervals containing one eigenvalue
//! after the first step
//! @param g_left left interval limits
//! @param g_right right interval limits
//! @param g_pos index of interval / number of intervals that are smaller than
//! right interval limit
//! @param precision desired precision of eigenvalues
////////////////////////////////////////////////////////////////////////////////
__global__ void bisectKernelLarge_OneIntervals(
float *g_d, float *g_s, const unsigned int n, unsigned int num_intervals,
float *g_left, float *g_right, unsigned int *g_pos, float precision) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
const unsigned int gtid = (blockDim.x * blockIdx.x) + threadIdx.x;
__shared__ float s_left_scratch[MAX_THREADS_BLOCK];
__shared__ float s_right_scratch[MAX_THREADS_BLOCK];
// active interval of thread
// left and right limit of current interval
float left, right;
// number of threads smaller than the right limit (also corresponds to the
// global index of the eigenvalues contained in the active interval)
unsigned int right_count;
// flag if current thread converged
unsigned int converged = 0;
// midpoint when current interval is subdivided
float mid = 0.0f;
// number of eigenvalues less than mid
unsigned int mid_count = 0;
// read data from global memory
if (gtid < num_intervals) {
left = g_left[gtid];
right = g_right[gtid];
right_count = g_pos[gtid];
}
// flag to determine if all threads converged to eigenvalue
__shared__ unsigned int converged_all_threads;
// initialized shared flag
if (0 == threadIdx.x) {
converged_all_threads = 0;
}
cg::sync(cta);
// process until all threads converged to an eigenvalue
// while( 0 == converged_all_threads) {
while (true) {
atomicExch(&converged_all_threads, 1);
// update midpoint for all active threads
if ((gtid < num_intervals) && (0 == converged)) {
mid = computeMidpoint(left, right);
}
// find number of eigenvalues that are smaller than midpoint
mid_count = computeNumSmallerEigenvalsLarge(
g_d, g_s, n, mid, gtid, num_intervals, s_left_scratch, s_right_scratch,
converged, cta);
cg::sync(cta);
// for all active threads
if ((gtid < num_intervals) && (0 == converged)) {
// udpate intervals -- always one child interval survives
if (right_count == mid_count) {
right = mid;
} else {
left = mid;
}
// check for convergence
float t0 = right - left;
float t1 = max(abs(right), abs(left)) * precision;
if (t0 < min(precision, t1)) {
float lambda = computeMidpoint(left, right);
left = lambda;
right = lambda;
converged = 1;
} else {
atomicExch(&converged_all_threads, 0);
}
}
cg::sync(cta);
if (1 == converged_all_threads) {
break;
}
cg::sync(cta);
}
// write data back to global memory
cg::sync(cta);
if (gtid < num_intervals) {
// intervals converged so left and right interval limit are both identical
// and identical to the eigenvalue
g_left[gtid] = left;
}
}
#endif // #ifndef _BISECT_KERNEL_LARGE_ONEI_H_
|