1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Determine eigenvalues for small symmetric, tridiagonal matrix */
#ifndef _BISECT_KERNEL_SMALL_H_
#define _BISECT_KERNEL_SMALL_H_
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
// includes, project
#include "config.h"
#include "util.h"
// additional kernel
#include "bisect_util.cu"
////////////////////////////////////////////////////////////////////////////////
//! Bisection to find eigenvalues of a real, symmetric, and tridiagonal matrix
//! @param g_d diagonal elements in global memory
//! @param g_s superdiagonal elements in global elements (stored so that the
//! element *(g_s - 1) can be accessed an equals 0
//! @param n size of matrix
//! @param lg lower bound of input interval (e.g. Gerschgorin interval)
//! @param ug upper bound of input interval (e.g. Gerschgorin interval)
//! @param lg_eig_count number of eigenvalues that are smaller than \a lg
//! @param lu_eig_count number of eigenvalues that are smaller than \a lu
//! @param epsilon desired accuracy of eigenvalues to compute
////////////////////////////////////////////////////////////////////////////////
__global__ void bisectKernel(float *g_d, float *g_s, const unsigned int n,
float *g_left, float *g_right,
unsigned int *g_left_count,
unsigned int *g_right_count, const float lg,
const float ug, const unsigned int lg_eig_count,
const unsigned int ug_eig_count, float epsilon) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
// intervals (store left and right because the subdivision tree is in general
// not dense
__shared__ float s_left[MAX_THREADS_BLOCK_SMALL_MATRIX];
__shared__ float s_right[MAX_THREADS_BLOCK_SMALL_MATRIX];
// number of eigenvalues that are smaller than s_left / s_right
// (correspondence is realized via indices)
__shared__ unsigned int s_left_count[MAX_THREADS_BLOCK_SMALL_MATRIX];
__shared__ unsigned int s_right_count[MAX_THREADS_BLOCK_SMALL_MATRIX];
// helper for stream compaction
__shared__ unsigned int s_compaction_list[MAX_THREADS_BLOCK_SMALL_MATRIX + 1];
// state variables for whole block
// if 0 then compaction of second chunk of child intervals is not necessary
// (because all intervals had exactly one non-dead child)
__shared__ unsigned int compact_second_chunk;
__shared__ unsigned int all_threads_converged;
// number of currently active threads
__shared__ unsigned int num_threads_active;
// number of threads to use for stream compaction
__shared__ unsigned int num_threads_compaction;
// helper for exclusive scan
unsigned int *s_compaction_list_exc = s_compaction_list + 1;
// variables for currently processed interval
// left and right limit of active interval
float left = 0.0f;
float right = 0.0f;
unsigned int left_count = 0;
unsigned int right_count = 0;
// midpoint of active interval
float mid = 0.0f;
// number of eigenvalues smaller then mid
unsigned int mid_count = 0;
// affected from compaction
unsigned int is_active_second = 0;
s_compaction_list[threadIdx.x] = 0;
s_left[threadIdx.x] = 0;
s_right[threadIdx.x] = 0;
s_left_count[threadIdx.x] = 0;
s_right_count[threadIdx.x] = 0;
cg::sync(cta);
// set up initial configuration
if (0 == threadIdx.x) {
s_left[0] = lg;
s_right[0] = ug;
s_left_count[0] = lg_eig_count;
s_right_count[0] = ug_eig_count;
compact_second_chunk = 0;
num_threads_active = 1;
num_threads_compaction = 1;
}
// for all active threads read intervals from the last level
// the number of (worst case) active threads per level l is 2^l
while (true) {
all_threads_converged = 1;
cg::sync(cta);
is_active_second = 0;
subdivideActiveInterval(threadIdx.x, s_left, s_right, s_left_count,
s_right_count, num_threads_active, left, right,
left_count, right_count, mid,
all_threads_converged);
cg::sync(cta);
// check if done
if (1 == all_threads_converged) {
break;
}
cg::sync(cta);
// compute number of eigenvalues smaller than mid
// use all threads for reading the necessary matrix data from global
// memory
// use s_left and s_right as scratch space for diagonal and
// superdiagonal of matrix
mid_count = computeNumSmallerEigenvals(g_d, g_s, n, mid, threadIdx.x,
num_threads_active, s_left, s_right,
(left == right), cta);
cg::sync(cta);
// store intervals
// for all threads store the first child interval in a continuous chunk of
// memory, and the second child interval -- if it exists -- in a second
// chunk; it is likely that all threads reach convergence up to
// \a epsilon at the same level; furthermore, for higher level most / all
// threads will have only one child, storing the first child compactly will
// (first) avoid to perform a compaction step on the first chunk, (second)
// make it for higher levels (when all threads / intervals have
// exactly one child) unnecessary to perform a compaction of the second
// chunk
if (threadIdx.x < num_threads_active) {
if (left != right) {
// store intervals
storeNonEmptyIntervals(threadIdx.x, num_threads_active, s_left, s_right,
s_left_count, s_right_count, left, mid, right,
left_count, mid_count, right_count, epsilon,
compact_second_chunk, s_compaction_list_exc,
is_active_second);
} else {
storeIntervalConverged(
s_left, s_right, s_left_count, s_right_count, left, mid, right,
left_count, mid_count, right_count, s_compaction_list_exc,
compact_second_chunk, num_threads_active, is_active_second);
}
}
// necessary so that compact_second_chunk is up-to-date
cg::sync(cta);
// perform compaction of chunk where second children are stored
// scan of (num_threads_active / 2) elements, thus at most
// (num_threads_active / 4) threads are needed
if (compact_second_chunk > 0) {
createIndicesCompaction(s_compaction_list_exc, num_threads_compaction,
cta);
compactIntervals(s_left, s_right, s_left_count, s_right_count, mid, right,
mid_count, right_count, s_compaction_list,
num_threads_active, is_active_second);
}
cg::sync(cta);
if (0 == threadIdx.x) {
// update number of active threads with result of reduction
num_threads_active += s_compaction_list[num_threads_active];
num_threads_compaction = ceilPow2(num_threads_active);
compact_second_chunk = 0;
}
cg::sync(cta);
}
cg::sync(cta);
// write resulting intervals to global mem
// for all threads write if they have been converged to an eigenvalue to
// a separate array
// at most n valid intervals
if (threadIdx.x < n) {
// intervals converged so left and right limit are identical
g_left[threadIdx.x] = s_left[threadIdx.x];
// left count is sufficient to have global order
g_left_count[threadIdx.x] = s_left_count[threadIdx.x];
}
}
#endif // #ifndef _BISECT_KERNEL_SMALL_H_
|