1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Utility / shared functionality for bisection kernels */
#ifndef _BISECT_UTIL_H_
#define _BISECT_UTIL_H_
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
// includes, project
#include "config.h"
#include "util.h"
////////////////////////////////////////////////////////////////////////////////
//! Compute the next lower power of two of n
//! @param n number for which next higher power of two is sought
////////////////////////////////////////////////////////////////////////////////
__device__ inline int floorPow2(int n) {
// early out if already power of two
if (0 == (n & (n - 1))) {
return n;
}
int exp;
frexp((float)n, &exp);
return (1 << (exp - 1));
}
////////////////////////////////////////////////////////////////////////////////
//! Compute the next higher power of two of n
//! @param n number for which next higher power of two is sought
////////////////////////////////////////////////////////////////////////////////
__device__ inline int ceilPow2(int n) {
// early out if already power of two
if (0 == (n & (n - 1))) {
return n;
}
int exp;
frexp((float)n, &exp);
return (1 << exp);
}
////////////////////////////////////////////////////////////////////////////////
//! Compute midpoint of interval [\a left, \a right] avoiding overflow if
//! possible
//! @param left left / lower limit of interval
//! @param right right / upper limit of interval
////////////////////////////////////////////////////////////////////////////////
__device__ inline float computeMidpoint(const float left, const float right) {
float mid;
if (sign_f(left) == sign_f(right)) {
mid = left + (right - left) * 0.5f;
} else {
mid = (left + right) * 0.5f;
}
return mid;
}
////////////////////////////////////////////////////////////////////////////////
//! Check if interval converged and store appropriately
//! @param addr address where to store the information of the interval
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param left lower limit of interval
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param right_count eigenvalues less than \a right
//! @param precision desired precision for eigenvalues
////////////////////////////////////////////////////////////////////////////////
template <class S, class T>
__device__ void storeInterval(unsigned int addr, float *s_left, float *s_right,
T *s_left_count, T *s_right_count, float left,
float right, S left_count, S right_count,
float precision) {
s_left_count[addr] = left_count;
s_right_count[addr] = right_count;
// check if interval converged
float t0 = abs(right - left);
float t1 = max(abs(left), abs(right)) * precision;
if (t0 <= max(MIN_ABS_INTERVAL, t1)) {
// compute mid point
float lambda = computeMidpoint(left, right);
// mark as converged
s_left[addr] = lambda;
s_right[addr] = lambda;
} else {
// store current limits
s_left[addr] = left;
s_right[addr] = right;
}
}
////////////////////////////////////////////////////////////////////////////////
//! Compute number of eigenvalues that are smaller than x given a symmetric,
//! real, and tridiagonal matrix
//! @param g_d diagonal elements stored in global memory
//! @param g_s superdiagonal elements stored in global memory
//! @param n size of matrix
//! @param x value for which the number of eigenvalues that are smaller is
//! seeked
//! @param tid thread identified (e.g. threadIdx.x or gtid)
//! @param num_intervals_active number of active intervals / threads that
//! currently process an interval
//! @param s_d scratch space to store diagonal entries of the tridiagonal
//! matrix in shared memory
//! @param s_s scratch space to store superdiagonal entries of the tridiagonal
//! matrix in shared memory
//! @param converged flag if the current thread is already converged (that
//! is count does not have to be computed)
////////////////////////////////////////////////////////////////////////////////
__device__ inline unsigned int computeNumSmallerEigenvals(
float *g_d, float *g_s, const unsigned int n, const float x,
const unsigned int tid, const unsigned int num_intervals_active, float *s_d,
float *s_s, unsigned int converged, cg::thread_block cta) {
float delta = 1.0f;
unsigned int count = 0;
cg::sync(cta);
// read data into shared memory
if (threadIdx.x < n) {
s_d[threadIdx.x] = *(g_d + threadIdx.x);
s_s[threadIdx.x] = *(g_s + threadIdx.x - 1);
}
cg::sync(cta);
// perform loop only for active threads
if ((tid < num_intervals_active) && (0 == converged)) {
// perform (optimized) Gaussian elimination to determine the number
// of eigenvalues that are smaller than n
for (unsigned int k = 0; k < n; ++k) {
delta = s_d[k] - x - (s_s[k] * s_s[k]) / delta;
count += (delta < 0) ? 1 : 0;
}
} // end if thread currently processing an interval
return count;
}
////////////////////////////////////////////////////////////////////////////////
//! Compute number of eigenvalues that are smaller than x given a symmetric,
//! real, and tridiagonal matrix
//! @param g_d diagonal elements stored in global memory
//! @param g_s superdiagonal elements stored in global memory
//! @param n size of matrix
//! @param x value for which the number of eigenvalues that are smaller is
//! seeked
//! @param tid thread identified (e.g. threadIdx.x or gtid)
//! @param num_intervals_active number of active intervals / threads that
//! currently process an interval
//! @param s_d scratch space to store diagonal entries of the tridiagonal
//! matrix in shared memory
//! @param s_s scratch space to store superdiagonal entries of the tridiagonal
//! matrix in shared memory
//! @param converged flag if the current thread is already converged (that
//! is count does not have to be computed)
////////////////////////////////////////////////////////////////////////////////
__device__ inline unsigned int computeNumSmallerEigenvalsLarge(
float *g_d, float *g_s, const unsigned int n, const float x,
const unsigned int tid, const unsigned int num_intervals_active, float *s_d,
float *s_s, unsigned int converged, cg::thread_block cta) {
float delta = 1.0f;
unsigned int count = 0;
unsigned int rem = n;
// do until whole diagonal and superdiagonal has been loaded and processed
for (unsigned int i = 0; i < n; i += blockDim.x) {
cg::sync(cta);
// read new chunk of data into shared memory
if ((i + threadIdx.x) < n) {
s_d[threadIdx.x] = *(g_d + i + threadIdx.x);
s_s[threadIdx.x] = *(g_s + i + threadIdx.x - 1);
}
cg::sync(cta);
if (tid < num_intervals_active) {
// perform (optimized) Gaussian elimination to determine the number
// of eigenvalues that are smaller than n
for (unsigned int k = 0; k < min(rem, blockDim.x); ++k) {
delta = s_d[k] - x - (s_s[k] * s_s[k]) / delta;
// delta = (abs( delta) < (1.0e-10)) ? -(1.0e-10) : delta;
count += (delta < 0) ? 1 : 0;
}
} // end if thread currently processing an interval
rem -= blockDim.x;
}
return count;
}
////////////////////////////////////////////////////////////////////////////////
//! Store all non-empty intervals resulting from the subdivision of the interval
//! currently processed by the thread
//! @param addr base address for storing intervals
//! @param num_threads_active number of threads / intervals in current sweep
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param left lower limit of interval
//! @param mid midpoint of interval
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param mid_count eigenvalues less than \a mid
//! @param right_count eigenvalues less than \a right
//! @param precision desired precision for eigenvalues
//! @param compact_second_chunk shared mem flag if second chunk is used and
//! ergo requires compaction
//! @param s_compaction_list_exc helper array for stream compaction,
//! s_compaction_list_exc[tid] = 1 when the
//! thread generated two child intervals
//! @is_active_interval mark is thread has a second non-empty child interval
////////////////////////////////////////////////////////////////////////////////
template <class S, class T>
__device__ void storeNonEmptyIntervals(
unsigned int addr, const unsigned int num_threads_active, float *s_left,
float *s_right, T *s_left_count, T *s_right_count, float left, float mid,
float right, const S left_count, const S mid_count, const S right_count,
float precision, unsigned int &compact_second_chunk,
T *s_compaction_list_exc, unsigned int &is_active_second) {
// check if both child intervals are valid
if ((left_count != mid_count) && (mid_count != right_count)) {
// store the left interval
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, left, mid,
left_count, mid_count, precision);
// mark that a second interval has been generated, only stored after
// stream compaction of second chunk
is_active_second = 1;
s_compaction_list_exc[threadIdx.x] = 1;
atomicExch(&compact_second_chunk, 1);
} else {
// only one non-empty child interval
// mark that no second child
is_active_second = 0;
s_compaction_list_exc[threadIdx.x] = 0;
// store the one valid child interval
if (left_count != mid_count) {
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, left,
mid, left_count, mid_count, precision);
} else {
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, mid,
right, mid_count, right_count, precision);
}
}
}
////////////////////////////////////////////////////////////////////////////////
//! Create indices for compaction, that is process \a s_compaction_list_exc
//! which is 1 for intervals that generated a second child and 0 otherwise
//! and create for each of the non-zero elements the index where the new
//! interval belongs to in a compact representation of all generated second
//! childs
//! @param s_compaction_list_exc list containing the flags which threads
//! generated two children
//! @param num_threads_compaction number of threads to employ for compaction
////////////////////////////////////////////////////////////////////////////////
template <class T>
__device__ void createIndicesCompaction(T *s_compaction_list_exc,
unsigned int num_threads_compaction,
cg::thread_block cta) {
unsigned int offset = 1;
const unsigned int tid = threadIdx.x;
// higher levels of scan tree
for (int d = (num_threads_compaction >> 1); d > 0; d >>= 1) {
cg::sync(cta);
if (tid < d) {
unsigned int ai = offset * (2 * tid + 1) - 1;
unsigned int bi = offset * (2 * tid + 2) - 1;
s_compaction_list_exc[bi] =
s_compaction_list_exc[bi] + s_compaction_list_exc[ai];
}
offset <<= 1;
}
// traverse down tree: first down to level 2 across
for (int d = 2; d < num_threads_compaction; d <<= 1) {
offset >>= 1;
cg::sync(cta);
if (tid < (d - 1)) {
unsigned int ai = offset * (tid + 1) - 1;
unsigned int bi = ai + (offset >> 1);
s_compaction_list_exc[bi] =
s_compaction_list_exc[bi] + s_compaction_list_exc[ai];
}
}
cg::sync(cta);
}
///////////////////////////////////////////////////////////////////////////////
//! Perform stream compaction for second child intervals
//! @param s_left shared
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param mid midpoint of current interval (left of new interval)
//! @param right upper limit of interval
//! @param mid_count eigenvalues less than \a mid
//! @param s_compaction_list list containing the indices where the data has
//! to be stored
//! @param num_threads_active number of active threads / intervals
//! @is_active_interval mark is thread has a second non-empty child interval
///////////////////////////////////////////////////////////////////////////////
template <class T>
__device__ void compactIntervals(float *s_left, float *s_right, T *s_left_count,
T *s_right_count, float mid, float right,
unsigned int mid_count,
unsigned int right_count, T *s_compaction_list,
unsigned int num_threads_active,
unsigned int is_active_second) {
const unsigned int tid = threadIdx.x;
// perform compaction / copy data for all threads where the second
// child is not dead
if ((tid < num_threads_active) && (1 == is_active_second)) {
unsigned int addr_w = num_threads_active + s_compaction_list[tid];
s_left[addr_w] = mid;
s_right[addr_w] = right;
s_left_count[addr_w] = mid_count;
s_right_count[addr_w] = right_count;
}
}
///////////////////////////////////////////////////////////////////////////////
//! Store intervals that have already converged (w.r.t. the desired precision),
//! duplicating intervals that contain multiple eigenvalues
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param left lower limit of interval
//! @param mid midpoint of interval (updated if split is necessary)
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param mid_count eigenvalues less than \a mid
//! @param right_count eigenvalues less than \a right
//! @param s_compaction_list_exc helper array for stream compaction, updated
//! at tid if split is necessary
//! @param compact_second_chunk shared mem flag if second chunk is used and
//! ergo requires compaction
//! @param num_threads_active number of active threads / intervals
///////////////////////////////////////////////////////////////////////////////
template <class T, class S>
__device__ void storeIntervalConverged(float *s_left, float *s_right,
T *s_left_count, T *s_right_count,
float &left, float &mid, float &right,
S &left_count, S &mid_count,
S &right_count, T *s_compaction_list_exc,
unsigned int &compact_second_chunk,
const unsigned int num_threads_active) {
const unsigned int tid = threadIdx.x;
const unsigned int multiplicity = right_count - left_count;
// check multiplicity of eigenvalue
if (1 == multiplicity) {
// just re-store intervals, simple eigenvalue
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = right_count;
// mark that no second child / clear
s_right_count[tid + num_threads_active] = 0;
s_compaction_list_exc[tid] = 0;
} else {
// number of eigenvalues after the split less than mid
mid_count = left_count + (multiplicity >> 1);
// store left interval
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = mid_count;
mid = left;
// mark that second child interval exists
s_right_count[tid + num_threads_active] = right_count;
s_compaction_list_exc[tid] = 1;
compact_second_chunk = 1;
}
}
template <class T, class S>
__device__ void storeIntervalConverged(float *s_left, float *s_right,
T *s_left_count, T *s_right_count,
float &left, float &mid, float &right,
S &left_count, S &mid_count,
S &right_count, T *s_compaction_list_exc,
unsigned int &compact_second_chunk,
const unsigned int num_threads_active,
unsigned int &is_active_second) {
const unsigned int tid = threadIdx.x;
const unsigned int multiplicity = right_count - left_count;
// check multiplicity of eigenvalue
if (1 == multiplicity) {
// just re-store intervals, simple eigenvalue
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = right_count;
// mark that no second child / clear
is_active_second = 0;
s_compaction_list_exc[tid] = 0;
} else {
// number of eigenvalues after the split less than mid
mid_count = left_count + (multiplicity >> 1);
// store left interval
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = mid_count;
mid = left;
// mark that second child interval exists
is_active_second = 1;
s_compaction_list_exc[tid] = 1;
compact_second_chunk = 1;
}
}
///////////////////////////////////////////////////////////////////////////////
//! Subdivide interval if active and not already converged
//! @param tid id of thread
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param num_threads_active number of active threads in warp
//! @param left lower limit of interval
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param right_count eigenvalues less than \a right
//! @param all_threads_converged shared memory flag if all threads are
//! converged
///////////////////////////////////////////////////////////////////////////////
template <class T>
__device__ void subdivideActiveInterval(
const unsigned int tid, float *s_left, float *s_right, T *s_left_count,
T *s_right_count, const unsigned int num_threads_active, float &left,
float &right, unsigned int &left_count, unsigned int &right_count,
float &mid, unsigned int &all_threads_converged) {
// for all active threads
if (tid < num_threads_active) {
left = s_left[tid];
right = s_right[tid];
left_count = s_left_count[tid];
right_count = s_right_count[tid];
// check if thread already converged
if (left != right) {
mid = computeMidpoint(left, right);
atomicExch(&all_threads_converged, 0);
} else if ((right_count - left_count) > 1) {
// mark as not converged if multiple eigenvalues enclosed
// duplicate interval in storeIntervalsConverged()
atomicExch(&all_threads_converged, 0);
}
} // end for all active threads
}
#endif // #ifndef _BISECT_UTIL_H_
|