1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Computation of eigenvalues of symmetric, tridiagonal matrix using
* bisection.
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>
#include <assert.h>
// includes, project
#include <helper_functions.h>
#include <helper_cuda.h>
#include "config.h"
#include "structs.h"
#include "matlab.h"
#include "util.h"
#include "gerschgorin.h"
#include "bisect_small.cuh"
#include "bisect_large.cuh"
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
bool runTest(int argc, char **argv);
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
bool bQAResults = false;
printf("Starting eigenvalues\n");
bQAResults = runTest(argc, argv);
printf("Test %s\n", bQAResults ? "Succeeded!" : "Failed!");
exit(bQAResults ? EXIT_SUCCESS : EXIT_FAILURE);
}
////////////////////////////////////////////////////////////////////////////////
//! Initialize the input data to the algorithm
//! @param input handles to the input data
//! @param exec_path path where executable is run (argv[0])
//! @param mat_size size of the matrix
//! @param user_defined 1 if the matrix size has been requested by the user,
//! 0 if the default size
////////////////////////////////////////////////////////////////////////////////
void initInputData(InputData &input, char *exec_path,
const unsigned int mat_size,
const unsigned int user_defined) {
// allocate memory
input.a = (float *)malloc(sizeof(float) * mat_size);
input.b = (float *)malloc(sizeof(float) * mat_size);
if (1 == user_defined) {
// initialize diagonal and superdiagonal entries with random values
srand(278217421);
// srand( clock());
for (unsigned int i = 0; i < mat_size; ++i) {
input.a[i] = (float)(2.0 * (((double)rand() / (double)RAND_MAX) - 0.5));
input.b[i] = (float)(2.0 * (((double)rand() / (double)RAND_MAX) - 0.5));
}
// the first element of s is used as padding on the device (thus the
// whole vector is copied to the device but the kernels are launched
// with (s+1) as start address
input.b[0] = 0.0f;
} else {
// read default matrix
unsigned int input_data_size = mat_size;
char *diag_path = sdkFindFilePath("diagonal.dat", exec_path);
assert(NULL != diag_path);
sdkReadFile(diag_path, &(input.a), &input_data_size, false);
char *sdiag_path = sdkFindFilePath("superdiagonal.dat", exec_path);
assert(NULL != sdiag_path);
sdkReadFile(sdiag_path, &(input.b), &input_data_size, false);
free(diag_path);
free(sdiag_path);
}
// allocate device memory for input
checkCudaErrors(cudaMalloc((void **)&(input.g_a), sizeof(float) * mat_size));
checkCudaErrors(
cudaMalloc((void **)&(input.g_b_raw), sizeof(float) * mat_size));
// copy data to device
checkCudaErrors(cudaMemcpy(input.g_a, input.a, sizeof(float) * mat_size,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(input.g_b_raw, input.b, sizeof(float) * mat_size,
cudaMemcpyHostToDevice));
input.g_b = input.g_b_raw + 1;
}
////////////////////////////////////////////////////////////////////////////////
//! Clean up input data, in particular allocated memory
//! @param input handles to the input data
////////////////////////////////////////////////////////////////////////////////
void cleanupInputData(InputData &input) {
freePtr(input.a);
freePtr(input.b);
checkCudaErrors(cudaFree(input.g_a));
input.g_a = NULL;
checkCudaErrors(cudaFree(input.g_b_raw));
input.g_b_raw = NULL;
input.g_b = NULL;
}
////////////////////////////////////////////////////////////////////////////////
//! Check if a specific matrix size has to be used
//! @param argc number of command line arguments (from main(argc, argv)
//! @param argv pointers to command line arguments (from main(argc, argv)
//! @param matrix_size size of matrix, updated if specific size specified on
//! command line
////////////////////////////////////////////////////////////////////////////////
void getMatrixSize(int argc, char **argv, unsigned int &mat_size,
unsigned int &user_defined) {
int temp = -1;
if (checkCmdLineFlag(argc, (const char **)argv, "matrix-size")) {
temp = getCmdLineArgumentInt(argc, (const char **)argv, "matrix-size");
}
if (temp > 0) {
mat_size = (unsigned int)temp;
// data type short is used in the kernel
assert(mat_size < (1 << 16));
// mat_size should be large than 2
assert(mat_size >= 2);
user_defined = 1;
}
printf("Matrix size: %i x %i\n", mat_size, mat_size);
}
////////////////////////////////////////////////////////////////////////////////
//! Check if a specific precision of the eigenvalue has to be obtained
//! @param argc number of command line arguments (from main(argc, argv)
//! @param argv pointers to command line arguments (from main(argc, argv)
//! @param iters_timing numbers of iterations for timing, updated if a
//! specific number is specified on the command line
//! @param user_defined 1 if the precision has been requested by the user,
//! 0 if the default size
////////////////////////////////////////////////////////////////////////////////
void getPrecision(int argc, char **argv, float &precision,
unsigned int &user_defined) {
float temp = -1.0f;
if (checkCmdLineFlag(argc, (const char **)argv, "precision")) {
temp = getCmdLineArgumentFloat(argc, (const char **)argv, "precision");
printf("Precision is between [0.001, 0.000001]\n");
}
if (temp > 1e-6 && temp <= 0.001) {
precision = temp;
user_defined = 1;
}
printf("Precision: %f\n", precision);
}
////////////////////////////////////////////////////////////////////////////////
//! Check if a particular number of iterations for timings has to be used
//! @param argc number of command line arguments (from main(argc, argv)
//! @param argv pointers to command line arguments (from main(argc, argv)
//! @param iters_timing number of timing iterations, updated if user
//! specific value
////////////////////////////////////////////////////////////////////////////////
void getItersTiming(int argc, char **argv, unsigned int &iters_timing) {
int temp = -1;
if (checkCmdLineFlag(argc, (const char **)argv, "iters-timing")) {
temp = getCmdLineArgumentInt(argc, (const char **)argv, "iters-timing");
}
if (temp > 0) {
iters_timing = temp;
}
printf("Iterations to be timed: %i\n", iters_timing);
}
////////////////////////////////////////////////////////////////////////////////
//! Check if a particular filename has to be used for the file where the result
//! is stored
//! @param argc number of command line arguments (from main(argc, argv)
//! @param argv pointers to command line arguments (from main(argc, argv)
//! @param filename filename of result file, updated if user specified
//! filename
////////////////////////////////////////////////////////////////////////////////
void getResultFilename(int argc, char **argv, char *&filename) {
char *temp = NULL;
getCmdLineArgumentString(argc, (const char **)argv, "filename-result", &temp);
if (NULL != temp) {
filename = (char *)malloc(sizeof(char) * strlen(temp));
strcpy(filename, temp);
free(temp);
}
printf("Result filename: '%s'\n", filename);
}
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test for CUDA
////////////////////////////////////////////////////////////////////////////////
bool runTest(int argc, char **argv) {
bool bCompareResult = false;
findCudaDevice(argc, (const char **)argv);
StopWatchInterface *timer = NULL;
StopWatchInterface *timer_total = NULL;
sdkCreateTimer(&timer);
sdkCreateTimer(&timer_total);
// default
unsigned int mat_size = 2048;
// flag if the matrix size is due to explicit user request
unsigned int user_defined = 0;
// desired precision of eigenvalues
float precision = 0.00001f;
unsigned int iters_timing = 100;
char *result_file = (char *)"eigenvalues.dat";
// check if there is a command line request for the matrix size
getMatrixSize(argc, argv, mat_size, user_defined);
// check if user requested specific precision
getPrecision(argc, argv, precision, user_defined);
// check if user requested specific number of iterations for timing
getItersTiming(argc, argv, iters_timing);
// file name for result file
getResultFilename(argc, argv, result_file);
// set up input
InputData input;
initInputData(input, argv[0], mat_size, user_defined);
// compute Gerschgorin interval
float lg = FLT_MAX;
float ug = -FLT_MAX;
computeGerschgorin(input.a, input.b + 1, mat_size, lg, ug);
printf("Gerschgorin interval: %f / %f\n", lg, ug);
// two kernels, for small matrices a lot of overhead can be avoided
if (mat_size <= MAX_SMALL_MATRIX) {
// initialize memory for result
ResultDataSmall result;
initResultSmallMatrix(result, mat_size);
// run the kernel
computeEigenvaluesSmallMatrix(input, result, mat_size, lg, ug, precision,
iters_timing);
// get the result from the device and do some sanity checks,
// save the result
processResultSmallMatrix(input, result, mat_size, result_file);
// clean up
cleanupResultSmallMatrix(result);
printf("User requests non-default argument(s), skipping self-check!\n");
bCompareResult = true;
} else {
// initialize memory for result
ResultDataLarge result;
initResultDataLargeMatrix(result, mat_size);
// run the kernel
computeEigenvaluesLargeMatrix(input, result, mat_size, precision, lg, ug,
iters_timing);
// get the result from the device and do some sanity checks
// save the result if user specified matrix size
bCompareResult = processResultDataLargeMatrix(
input, result, mat_size, result_file, user_defined, argv[0]);
// cleanup
cleanupResultDataLargeMatrix(result);
}
cleanupInputData(input);
return bCompareResult;
}
|