1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CUDA_INTERVAL_H
#define CUDA_INTERVAL_H
#include "interval.h"
#include "cuda_interval_lib.h"
// Stack in local memory. Managed independently for each thread.
template <class T, int N>
class local_stack {
private:
T buf[N];
int tos;
public:
__device__ local_stack() : tos(-1) {}
__device__ T const &top() const { return buf[tos]; }
__device__ T &top() { return buf[tos]; }
__device__ void push(T const &v) { buf[++tos] = v; }
__device__ T pop() { return buf[tos--]; }
__device__ bool full() { return tos == (N - 1); }
__device__ bool empty() { return tos == -1; }
};
// Stacks in global memory.
// Same function as local_stack, but accessible from the host.
// Interleaved between threads by blocks of THREADS elements.
// Independent stack for each thread, no sharing of data between threads.
template <class T, int N, int THREADS>
class global_stack {
private:
T *buf;
int free_index;
public:
// buf should point to an allocated global buffer of
// size N * THREADS * sizeof(T)
__device__ global_stack(T *buf, int thread_id)
: buf(buf), free_index(thread_id) {}
__device__ void push(T const &v) {
buf[free_index] = v;
free_index += THREADS;
}
__device__ T pop() {
free_index -= THREADS;
return buf[free_index];
}
__device__ bool full() { return free_index >= N * THREADS; }
__device__ bool empty() { return free_index < THREADS; }
__device__ int size() { return free_index / THREADS; }
};
// The function F of which we want to find roots, defined on intervals
// Should typically depend on thread_id (indexing an array of coefficients...)
template <class T>
__device__ interval_gpu<T> f(interval_gpu<T> const &x, int thread_id) {
typedef interval_gpu<T> I;
T alpha = -T(thread_id) / T(THREADS);
return square(x - I(1)) + I(alpha) * x;
}
// First derivative of F, also defined on intervals
template <class T>
__device__ interval_gpu<T> fd(interval_gpu<T> const &x, int thread_id) {
typedef interval_gpu<T> I;
T alpha = -T(thread_id) / T(THREADS);
return I(2) * x + I(alpha - 2);
}
// Is this interval small enough to stop iterating?
template <class T>
__device__ bool is_minimal(interval_gpu<T> const &x, int thread_id) {
T const epsilon_x = 1e-6f;
T const epsilon_y = 1e-6f;
return !empty(x) && (width(x) <= epsilon_x * abs(median(x)) ||
width(f(x, thread_id)) <= epsilon_y);
}
// In some cases, Newton iterations converge slowly.
// Bisecting the interval accelerates convergence.
template <class T>
__device__ bool should_bisect(interval_gpu<T> const &x,
interval_gpu<T> const &x1,
interval_gpu<T> const &x2, T alpha) {
T wmax = alpha * width(x);
return (!empty(x1) && width(x1) > wmax) || (!empty(x2) && width(x2) > wmax);
}
// Main interval Newton loop.
// Keep refining a list of intervals stored in a stack.
// Always keep the next interval to work on in registers
// (avoids excessive spilling to local mem)
template <class T, int THREADS, int DEPTH_RESULT>
__device__ void newton_interval(
global_stack<interval_gpu<T>, DEPTH_RESULT, THREADS> &result,
interval_gpu<T> const &ix0, int thread_id) {
typedef interval_gpu<T> I;
int const DEPTH_WORK = 128;
T const alpha = .99f; // Threshold before switching to bisection
// Intervals to be processed
local_stack<I, DEPTH_WORK> work;
// We start with the whole domain
I ix = ix0;
while (true) {
// Compute (x - F({x})/F'(ix)) inter ix
// -> may yield 0, 1 or 2 intervals
T x = median(ix);
I iq = f(I(x), thread_id);
I id = fd(ix, thread_id);
bool has_part2;
I part1, part2 = I::empty();
part1 = division_part1(iq, id, has_part2);
part1 = intersect(I(x) - part1, ix);
if (has_part2) {
part2 = division_part2(iq, id);
part2 = intersect(I(x) - part2, ix);
}
// Do we have small-enough intervals?
if (is_minimal(part1, thread_id)) {
result.push(part1);
part1 = I::empty();
}
if (has_part2 && is_minimal(part2, thread_id)) {
result.push(part2);
part2 = I::empty();
}
if (should_bisect(ix, part1, part2, alpha)) {
// Not so good improvement
// Switch to bisection method for this step
part1 = I(ix.lower(), x);
part2 = I(x, ix.upper());
has_part2 = true;
}
if (!empty(part1)) {
// At least 1 solution
// We will compute part1 next
ix = part1;
if (has_part2 && !empty(part2)) {
// 2 solutions
// Save the second solution for later
work.push(part2);
}
} else if (has_part2 && !empty(part2)) {
// 1 solution
// Work on that next
ix = part2;
} else {
// No solution
// Do we still have work to do in the stack?
if (work.empty()) // If not, we are done
break;
else
ix = work.pop(); // Otherwise, pick an interval to work on
}
}
}
// Recursive implementation
template <class T, int THREADS, int DEPTH_RESULT>
__device__ void newton_interval_rec(
global_stack<interval_gpu<T>, DEPTH_RESULT, THREADS> &result,
interval_gpu<T> const &ix, int thread_id) {
typedef interval_gpu<T> I;
T const alpha = .99f; // Threshold before switching to bisection
if (is_minimal(ix, thread_id)) {
result.push(ix);
return;
}
// Compute (x - F({x})/F'(ix)) inter ix
// -> may yield 0, 1 or 2 intervals
T x = median(ix);
I iq = f(I(x), thread_id);
I id = fd(ix, thread_id);
bool has_part2;
I part1, part2 = I::empty();
part1 = division_part1(iq, id, has_part2);
part1 = intersect(I(x) - part1, ix);
if (has_part2) {
part2 = division_part2(iq, id);
part2 = intersect(I(x) - part2, ix);
}
if (should_bisect(ix, part1, part2, alpha)) {
// Not so good improvement
// Switch to bisection method for this step
part1 = I(ix.lower(), x);
part2 = I(x, ix.upper());
has_part2 = true;
}
if (has_part2 && !empty(part2)) {
newton_interval_rec<T, THREADS, DEPTH_RESULT>(result, part2, thread_id);
}
if (!empty(part1)) {
newton_interval_rec<T, THREADS, DEPTH_RESULT>(result, part1, thread_id);
}
}
// Naive implementation, no attempt to keep the top of the stack in registers
template <class T, int THREADS, int DEPTH_RESULT>
__device__ void newton_interval_naive(
global_stack<interval_gpu<T>, DEPTH_RESULT, THREADS> &result,
interval_gpu<T> const &ix0, int thread_id) {
typedef interval_gpu<T> I;
int const DEPTH_WORK = 128;
T const alpha = .99f; // Threshold before switching to bisection
// Intervals to be processed
local_stack<I, DEPTH_WORK> work;
// We start with the whole domain
work.push(ix0);
while (!work.empty()) {
I ix = work.pop();
if (is_minimal(ix, thread_id)) {
result.push(ix);
} else {
// Compute (x - F({x})/F'(ix)) inter ix
// -> may yield 0, 1 or 2 intervals
T x = median(ix);
I iq = f(I(x), thread_id);
I id = fd(ix, thread_id);
bool has_part2;
I part1, part2 = I::empty();
part1 = division_part1(iq, id, has_part2);
part1 = intersect(I(x) - part1, ix);
if (has_part2) {
part2 = division_part2(iq, id);
part2 = intersect(I(x) - part2, ix);
}
if (should_bisect(ix, part1, part2, alpha)) {
// Not so good improvement
// Switch to bisection method for this step
part1 = I(ix.lower(), x);
part2 = I(x, ix.upper());
has_part2 = true;
}
if (!empty(part1)) {
work.push(part1);
}
if (has_part2 && !empty(part2)) {
work.push(part2);
}
}
}
}
template <class T>
__global__ void test_interval_newton(interval_gpu<T> *buffer, int *nresults,
interval_gpu<T> i,
int implementation_choice) {
int thread_id = blockIdx.x * BLOCK_SIZE + threadIdx.x;
typedef interval_gpu<T> I;
// Intervals to return
global_stack<I, DEPTH_RESULT, THREADS> result(buffer, thread_id);
switch (implementation_choice) {
case 0:
newton_interval_naive<T, THREADS>(result, i, thread_id);
break;
case 1:
newton_interval<T, THREADS>(result, i, thread_id);
break;
#if (__CUDA_ARCH__ >= 200)
case 2:
newton_interval_rec<T, THREADS>(result, i, thread_id);
break;
#endif
default:
newton_interval_naive<T, THREADS>(result, i, thread_id);
}
nresults[thread_id] = result.size();
}
#endif
|