1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Parallel reduction
This sample shows how to perform a reduction operation on an array of values
to produce a single value in a single kernel (as opposed to two or more
kernel calls as shown in the "reduction" CUDA Sample). Single-pass
reduction requires Cooperative Groups.
Reductions are a very common computation in parallel algorithms. Any time
an array of values needs to be reduced to a single value using a binary
associative operator, a reduction can be used. Example applications include
statistics computations such as mean and standard deviation, and image
processing applications such as finding the total luminance of an
image.
This code performs sum reductions, but any associative operator such as
min() or max() could also be used.
It assumes the input size is a power of 2.
COMMAND LINE ARGUMENTS
"--n=<N>" :Specify the number of elements to reduce (default 33554432)
"--threads=<N>" :Specify the number of threads per block (default 128)
"--maxblocks=<N>" :Specify the maximum number of thread blocks to launch
(kernel 6 only, default 64)
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
// includes, project
#include <helper_functions.h>
#include <helper_cuda.h>
#include <cuda_runtime.h>
const char *sSDKsample = "reductionMultiBlockCG";
#include <cuda_runtime_api.h>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
/*
Parallel sum reduction using shared memory
- takes log(n) steps for n input elements
- uses n/2 threads
- only works for power-of-2 arrays
This version adds multiple elements per thread sequentially. This reduces the
overall cost of the algorithm while keeping the work complexity O(n) and the
step complexity O(log n).
(Brent's Theorem optimization)
See the CUDA SDK "reduction" sample for more information.
*/
__device__ void reduceBlock(double *sdata, const cg::thread_block &cta) {
const unsigned int tid = cta.thread_rank();
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
sdata[tid] = cg::reduce(tile32, sdata[tid], cg::plus<double>());
cg::sync(cta);
double beta = 0.0;
if (cta.thread_rank() == 0) {
beta = 0;
for (int i = 0; i < blockDim.x; i += tile32.size()) {
beta += sdata[i];
}
sdata[0] = beta;
}
cg::sync(cta);
}
// This reduction kernel reduces an arbitrary size array in a single kernel
// invocation
//
// For more details on the reduction algorithm (notably the multi-pass
// approach), see the "reduction" sample in the CUDA SDK.
extern "C" __global__ void reduceSinglePassMultiBlockCG(const float *g_idata,
float *g_odata,
unsigned int n) {
// Handle to thread block group
cg::thread_block block = cg::this_thread_block();
cg::grid_group grid = cg::this_grid();
extern double __shared__ sdata[];
// Stride over grid and add the values to a shared memory buffer
sdata[block.thread_rank()] = 0;
for (int i = grid.thread_rank(); i < n; i += grid.size()) {
sdata[block.thread_rank()] += g_idata[i];
}
cg::sync(block);
// Reduce each block (called once per block)
reduceBlock(sdata, block);
// Write out the result to global memory
if (block.thread_rank() == 0) {
g_odata[blockIdx.x] = sdata[0];
}
cg::sync(grid);
if (grid.thread_rank() == 0) {
for (int block = 1; block < gridDim.x; block++) {
g_odata[0] += g_odata[block];
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Wrapper function for kernel launch
////////////////////////////////////////////////////////////////////////////////
void call_reduceSinglePassMultiBlockCG(int size, int threads, int numBlocks,
float *d_idata, float *d_odata) {
int smemSize = threads * sizeof(double);
void *kernelArgs[] = {
(void *)&d_idata, (void *)&d_odata, (void *)&size,
};
dim3 dimBlock(threads, 1, 1);
dim3 dimGrid(numBlocks, 1, 1);
cudaLaunchCooperativeKernel((void *)reduceSinglePassMultiBlockCG, dimGrid,
dimBlock, kernelArgs, smemSize, NULL);
// check if kernel execution generated an error
getLastCudaError("Kernel execution failed");
}
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
bool runTest(int argc, char **argv, int device);
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
cudaDeviceProp deviceProp = {0};
int dev;
printf("%s Starting...\n\n", sSDKsample);
dev = findCudaDevice(argc, (const char **)argv);
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
if (!deviceProp.cooperativeLaunch) {
printf(
"\nSelected GPU (%d) does not support Cooperative Kernel Launch, "
"Waiving the run\n",
dev);
exit(EXIT_WAIVED);
}
bool bTestPassed = false;
bTestPassed = runTest(argc, argv, dev);
exit(bTestPassed ? EXIT_SUCCESS : EXIT_FAILURE);
}
////////////////////////////////////////////////////////////////////////////////
//! Compute sum reduction on CPU
//! We use Kahan summation for an accurate sum of large arrays.
//! http://en.wikipedia.org/wiki/Kahan_summation_algorithm
//!
//! @param data pointer to input data
//! @param size number of input data elements
////////////////////////////////////////////////////////////////////////////////
template <class T>
T reduceCPU(T *data, int size) {
T sum = data[0];
T c = (T)0.0;
for (int i = 1; i < size; i++) {
T y = data[i] - c;
T t = sum + y;
c = (t - sum) - y;
sum = t;
}
return sum;
}
unsigned int nextPow2(unsigned int x) {
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
}
////////////////////////////////////////////////////////////////////////////////
// Compute the number of threads and blocks to use for the reduction
// We set threads / block to the minimum of maxThreads and n/2.
////////////////////////////////////////////////////////////////////////////////
void getNumBlocksAndThreads(int n, int maxBlocks, int maxThreads, int &blocks,
int &threads) {
if (n == 1) {
threads = 1;
blocks = 1;
} else {
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(
&blocks, &threads, reduceSinglePassMultiBlockCG));
}
blocks = min(maxBlocks, blocks);
}
////////////////////////////////////////////////////////////////////////////////
// This function performs a reduction of the input data multiple times and
// measures the average reduction time.
////////////////////////////////////////////////////////////////////////////////
float benchmarkReduce(int n, int numThreads, int numBlocks, int maxThreads,
int maxBlocks, int testIterations,
StopWatchInterface *timer, float *h_odata, float *d_idata,
float *d_odata) {
float gpu_result = 0;
cudaError_t error;
printf("\nLaunching %s kernel\n",
"SinglePass Multi Block Cooperative Groups");
for (int i = 0; i < testIterations; ++i) {
gpu_result = 0;
sdkStartTimer(&timer);
call_reduceSinglePassMultiBlockCG(n, numThreads, numBlocks, d_idata,
d_odata);
cudaDeviceSynchronize();
sdkStopTimer(&timer);
}
// copy final sum from device to host
error =
cudaMemcpy(&gpu_result, d_odata, sizeof(float), cudaMemcpyDeviceToHost);
checkCudaErrors(error);
return gpu_result;
}
////////////////////////////////////////////////////////////////////////////////
// The main function which runs the reduction test.
////////////////////////////////////////////////////////////////////////////////
bool runTest(int argc, char **argv, int device) {
int size = 1 << 25; // number of elements to reduce
bool bTestPassed = false;
if (checkCmdLineFlag(argc, (const char **)argv, "n")) {
size = getCmdLineArgumentInt(argc, (const char **)argv, "n");
}
printf("%d elements\n", size);
// Set the device to be used
cudaDeviceProp prop = {0};
checkCudaErrors(cudaSetDevice(device));
checkCudaErrors(cudaGetDeviceProperties(&prop, device));
// create random input data on CPU
unsigned int bytes = size * sizeof(float);
float *h_idata = (float *)malloc(bytes);
for (int i = 0; i < size; i++) {
// Keep the numbers small so we don't get truncation error in the sum
h_idata[i] = (rand() & 0xFF) / (float)RAND_MAX;
}
// Determine the launch configuration (threads, blocks)
int maxThreads = 0;
int maxBlocks = 0;
if (checkCmdLineFlag(argc, (const char **)argv, "threads")) {
maxThreads = getCmdLineArgumentInt(argc, (const char **)argv, "threads");
} else {
maxThreads = prop.maxThreadsPerBlock;
}
if (checkCmdLineFlag(argc, (const char **)argv, "maxblocks")) {
maxBlocks = getCmdLineArgumentInt(argc, (const char **)argv, "maxblocks");
} else {
maxBlocks = prop.multiProcessorCount *
(prop.maxThreadsPerMultiProcessor / prop.maxThreadsPerBlock);
}
int numBlocks = 0;
int numThreads = 0;
getNumBlocksAndThreads(size, maxBlocks, maxThreads, numBlocks, numThreads);
// We calculate the occupancy to know how many block can actually fit on the
// GPU
int numBlocksPerSm = 0;
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&numBlocksPerSm, reduceSinglePassMultiBlockCG, numThreads,
numThreads * sizeof(double)));
int numSms = prop.multiProcessorCount;
if (numBlocks > numBlocksPerSm * numSms) {
numBlocks = numBlocksPerSm * numSms;
}
printf("numThreads: %d\n", numThreads);
printf("numBlocks: %d\n", numBlocks);
// allocate mem for the result on host side
float *h_odata = (float *)malloc(numBlocks * sizeof(float));
// allocate device memory and data
float *d_idata = NULL;
float *d_odata = NULL;
checkCudaErrors(cudaMalloc((void **)&d_idata, bytes));
checkCudaErrors(cudaMalloc((void **)&d_odata, numBlocks * sizeof(float)));
// copy data directly to device memory
checkCudaErrors(cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_odata, h_idata, numBlocks * sizeof(float),
cudaMemcpyHostToDevice));
int testIterations = 100;
StopWatchInterface *timer = 0;
sdkCreateTimer(&timer);
float gpu_result = 0;
gpu_result =
benchmarkReduce(size, numThreads, numBlocks, maxThreads, maxBlocks,
testIterations, timer, h_odata, d_idata, d_odata);
float reduceTime = sdkGetAverageTimerValue(&timer);
printf("Average time: %f ms\n", reduceTime);
printf("Bandwidth: %f GB/s\n\n",
(size * sizeof(int)) / (reduceTime * 1.0e6));
// compute reference solution
float cpu_result = reduceCPU<float>(h_idata, size);
printf("GPU result = %0.12f\n", gpu_result);
printf("CPU result = %0.12f\n", cpu_result);
double threshold = 1e-8 * size;
double diff = abs((double)gpu_result - (double)cpu_result);
bTestPassed = (diff < threshold);
// cleanup
sdkDeleteTimer(&timer);
free(h_idata);
free(h_odata);
cudaFree(d_idata);
cudaFree(d_odata);
return bTestPassed;
}
|