1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample calculates scalar products of a
* given set of input vector pairs
*/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <helper_functions.h>
#include <helper_cuda.h>
///////////////////////////////////////////////////////////////////////////////
// Calculate scalar products of VectorN vectors of ElementN elements on CPU
///////////////////////////////////////////////////////////////////////////////
extern "C" void scalarProdCPU(float *h_C, float *h_A, float *h_B, int vectorN,
int elementN);
///////////////////////////////////////////////////////////////////////////////
// Calculate scalar products of VectorN vectors of ElementN elements on GPU
///////////////////////////////////////////////////////////////////////////////
#include "scalarProd_kernel.cuh"
////////////////////////////////////////////////////////////////////////////////
// Helper function, returning uniformly distributed
// random float in [low, high] range
////////////////////////////////////////////////////////////////////////////////
float RandFloat(float low, float high) {
float t = (float)rand() / (float)RAND_MAX;
return (1.0f - t) * low + t * high;
}
///////////////////////////////////////////////////////////////////////////////
// Data configuration
///////////////////////////////////////////////////////////////////////////////
// Total number of input vector pairs; arbitrary
const int VECTOR_N = 256;
// Number of elements per vector; arbitrary,
// but strongly preferred to be a multiple of warp size
// to meet memory coalescing constraints
const int ELEMENT_N = 4096;
// Total number of data elements
const int DATA_N = VECTOR_N * ELEMENT_N;
const int DATA_SZ = DATA_N * sizeof(float);
const int RESULT_SZ = VECTOR_N * sizeof(float);
///////////////////////////////////////////////////////////////////////////////
// Main program
///////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
float *h_A, *h_B, *h_C_CPU, *h_C_GPU;
float *d_A, *d_B, *d_C;
double delta, ref, sum_delta, sum_ref, L1norm;
StopWatchInterface *hTimer = NULL;
int i;
printf("%s Starting...\n\n", argv[0]);
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
findCudaDevice(argc, (const char **)argv);
sdkCreateTimer(&hTimer);
printf("Initializing data...\n");
printf("...allocating CPU memory.\n");
h_A = (float *)malloc(DATA_SZ);
h_B = (float *)malloc(DATA_SZ);
h_C_CPU = (float *)malloc(RESULT_SZ);
h_C_GPU = (float *)malloc(RESULT_SZ);
printf("...allocating GPU memory.\n");
checkCudaErrors(cudaMalloc((void **)&d_A, DATA_SZ));
checkCudaErrors(cudaMalloc((void **)&d_B, DATA_SZ));
checkCudaErrors(cudaMalloc((void **)&d_C, RESULT_SZ));
printf("...generating input data in CPU mem.\n");
srand(123);
// Generating input data on CPU
for (i = 0; i < DATA_N; i++) {
h_A[i] = RandFloat(0.0f, 1.0f);
h_B[i] = RandFloat(0.0f, 1.0f);
}
printf("...copying input data to GPU mem.\n");
// Copy options data to GPU memory for further processing
checkCudaErrors(cudaMemcpy(d_A, h_A, DATA_SZ, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_B, h_B, DATA_SZ, cudaMemcpyHostToDevice));
printf("Data init done.\n");
printf("Executing GPU kernel...\n");
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&hTimer);
sdkStartTimer(&hTimer);
scalarProdGPU<<<128, 256>>>(d_C, d_A, d_B, VECTOR_N, ELEMENT_N);
getLastCudaError("scalarProdGPU() execution failed\n");
checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&hTimer);
printf("GPU time: %f msecs.\n", sdkGetTimerValue(&hTimer));
printf("Reading back GPU result...\n");
// Read back GPU results to compare them to CPU results
checkCudaErrors(cudaMemcpy(h_C_GPU, d_C, RESULT_SZ, cudaMemcpyDeviceToHost));
printf("Checking GPU results...\n");
printf("..running CPU scalar product calculation\n");
scalarProdCPU(h_C_CPU, h_A, h_B, VECTOR_N, ELEMENT_N);
printf("...comparing the results\n");
// Calculate max absolute difference and L1 distance
// between CPU and GPU results
sum_delta = 0;
sum_ref = 0;
for (i = 0; i < VECTOR_N; i++) {
delta = fabs(h_C_GPU[i] - h_C_CPU[i]);
ref = h_C_CPU[i];
sum_delta += delta;
sum_ref += ref;
}
L1norm = sum_delta / sum_ref;
printf("Shutting down...\n");
checkCudaErrors(cudaFree(d_C));
checkCudaErrors(cudaFree(d_B));
checkCudaErrors(cudaFree(d_A));
free(h_C_GPU);
free(h_C_CPU);
free(h_B);
free(h_A);
sdkDeleteTimer(&hTimer);
printf("L1 error: %E\n", L1norm);
printf((L1norm < 1e-6) ? "Test passed\n" : "Test failed!\n");
exit(L1norm < 1e-6 ? EXIT_SUCCESS : EXIT_FAILURE);
}
|