1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample demonstrates stream ordered memory allocation on a GPU using
* cudaMallocAsync and cudaMemPool family of APIs.
*
* basicStreamOrderedAllocation(): demonstrates stream ordered allocation using
* cudaMallocAsync/cudaFreeAsync APIs with default settings.
*
* streamOrderedAllocationPostSync(): demonstrates if there's a synchronization
* in between allocations, then setting the release threshold on the pool will
* make sure the synchronize will not free memory back to the OS.
*/
// System includes
#include <assert.h>
#include <stdio.h>
#include <climits>
// CUDA runtime
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_cuda.h>
#include <helper_functions.h>
#define MAX_ITER 20
/* Add two vectors on the GPU */
__global__ void vectorAddGPU(const float *a, const float *b, float *c, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) {
c[idx] = a[idx] + b[idx];
}
}
int basicStreamOrderedAllocation(const int dev, const int nelem, const float *a,
const float *b, float *c) {
float *d_a, *d_b, *d_c; // Device buffers
float errorNorm, refNorm, ref, diff;
size_t bytes = nelem * sizeof(float);
cudaStream_t stream;
printf("Starting basicStreamOrderedAllocation()\n");
checkCudaErrors(cudaSetDevice(dev));
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
checkCudaErrors(cudaMallocAsync(&d_a, bytes, stream));
checkCudaErrors(cudaMallocAsync(&d_b, bytes, stream));
checkCudaErrors(cudaMallocAsync(&d_c, bytes, stream));
checkCudaErrors(
cudaMemcpyAsync(d_a, a, bytes, cudaMemcpyHostToDevice, stream));
checkCudaErrors(
cudaMemcpyAsync(d_b, b, bytes, cudaMemcpyHostToDevice, stream));
dim3 block(256);
dim3 grid((unsigned int)ceil(nelem / (float)block.x));
vectorAddGPU<<<grid, block, 0, stream>>>(d_a, d_b, d_c, nelem);
checkCudaErrors(cudaFreeAsync(d_a, stream));
checkCudaErrors(cudaFreeAsync(d_b, stream));
checkCudaErrors(
cudaMemcpyAsync(c, d_c, bytes, cudaMemcpyDeviceToHost, stream));
checkCudaErrors(cudaFreeAsync(d_c, stream));
checkCudaErrors(cudaStreamSynchronize(stream));
/* Compare the results */
printf("> Checking the results from vectorAddGPU() ...\n");
errorNorm = 0.f;
refNorm = 0.f;
for (int n = 0; n < nelem; n++) {
ref = a[n] + b[n];
diff = c[n] - ref;
errorNorm += diff * diff;
refNorm += ref * ref;
}
errorNorm = (float)sqrt((double)errorNorm);
refNorm = (float)sqrt((double)refNorm);
if (errorNorm / refNorm < 1.e-6f)
printf("basicStreamOrderedAllocation PASSED\n");
checkCudaErrors(cudaStreamDestroy(stream));
return errorNorm / refNorm < 1.e-6f ? EXIT_SUCCESS : EXIT_FAILURE;
}
// streamOrderedAllocationPostSync(): demonstrates If the application wants the
// memory to persist in the pool beyond synchronization, then it sets the
// release threshold on the pool. This way, when the application reaches the
// "steady state", it is no longer allocating/freeing memory from the OS.
int streamOrderedAllocationPostSync(const int dev, const int nelem,
const float *a, const float *b, float *c) {
float *d_a, *d_b, *d_c; // Device buffers
float errorNorm, refNorm, ref, diff;
size_t bytes = nelem * sizeof(float);
cudaStream_t stream;
cudaMemPool_t memPool;
cudaEvent_t start, end;
printf("Starting streamOrderedAllocationPostSync()\n");
checkCudaErrors(cudaSetDevice(dev));
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&end));
checkCudaErrors(cudaDeviceGetDefaultMemPool(&memPool, dev));
uint64_t thresholdVal = ULONG_MAX;
// set high release threshold on the default pool so that cudaFreeAsync will
// not actually release memory to the system. By default, the release
// threshold for a memory pool is set to zero. This implies that the CUDA
// driver is allowed to release a memory chunk back to the system as long as
// it does not contain any active suballocations.
checkCudaErrors(cudaMemPoolSetAttribute(
memPool, cudaMemPoolAttrReleaseThreshold, (void *)&thresholdVal));
// Record the start event
checkCudaErrors(cudaEventRecord(start, stream));
for (int i = 0; i < MAX_ITER; i++) {
checkCudaErrors(cudaMallocAsync(&d_a, bytes, stream));
checkCudaErrors(cudaMallocAsync(&d_b, bytes, stream));
checkCudaErrors(cudaMallocAsync(&d_c, bytes, stream));
checkCudaErrors(
cudaMemcpyAsync(d_a, a, bytes, cudaMemcpyHostToDevice, stream));
checkCudaErrors(
cudaMemcpyAsync(d_b, b, bytes, cudaMemcpyHostToDevice, stream));
dim3 block(256);
dim3 grid((unsigned int)ceil(nelem / (float)block.x));
vectorAddGPU<<<grid, block, 0, stream>>>(d_a, d_b, d_c, nelem);
checkCudaErrors(cudaFreeAsync(d_a, stream));
checkCudaErrors(cudaFreeAsync(d_b, stream));
checkCudaErrors(
cudaMemcpyAsync(c, d_c, bytes, cudaMemcpyDeviceToHost, stream));
checkCudaErrors(cudaFreeAsync(d_c, stream));
checkCudaErrors(cudaStreamSynchronize(stream));
}
checkCudaErrors(cudaEventRecord(end, stream));
// Wait for the end event to complete
checkCudaErrors(cudaEventSynchronize(end));
float msecTotal = 0.0f;
checkCudaErrors(cudaEventElapsedTime(&msecTotal, start, end));
printf("Total elapsed time = %f ms over %d iterations\n", msecTotal,
MAX_ITER);
/* Compare the results */
printf("> Checking the results from vectorAddGPU() ...\n");
errorNorm = 0.f;
refNorm = 0.f;
for (int n = 0; n < nelem; n++) {
ref = a[n] + b[n];
diff = c[n] - ref;
errorNorm += diff * diff;
refNorm += ref * ref;
}
errorNorm = (float)sqrt((double)errorNorm);
refNorm = (float)sqrt((double)refNorm);
if (errorNorm / refNorm < 1.e-6f)
printf("streamOrderedAllocationPostSync PASSED\n");
checkCudaErrors(cudaStreamDestroy(stream));
return errorNorm / refNorm < 1.e-6f ? EXIT_SUCCESS : EXIT_FAILURE;
}
int main(int argc, char **argv) {
int nelem;
int dev = 0; // use default device 0
size_t bytes;
float *a, *b, *c; // Host
if (checkCmdLineFlag(argc, (const char **)argv, "help")) {
printf("Usage: streamOrderedAllocation [OPTION]\n\n");
printf("Options:\n");
printf(" --device=[device #] Specify the device to be used\n");
return EXIT_SUCCESS;
}
dev = findCudaDevice(argc, (const char **)argv);
int isMemPoolSupported = 0;
checkCudaErrors(cudaDeviceGetAttribute(&isMemPoolSupported,
cudaDevAttrMemoryPoolsSupported, dev));
if (!isMemPoolSupported) {
printf("Waiving execution as device does not support Memory Pools\n");
exit(EXIT_WAIVED);
}
// Allocate CPU memory.
nelem = 1048576;
bytes = nelem * sizeof(float);
a = (float *)malloc(bytes);
b = (float *)malloc(bytes);
c = (float *)malloc(bytes);
/* Initialize the vectors. */
for (int n = 0; n < nelem; n++) {
a[n] = rand() / (float)RAND_MAX;
b[n] = rand() / (float)RAND_MAX;
}
int ret1 = basicStreamOrderedAllocation(dev, nelem, a, b, c);
int ret2 = streamOrderedAllocationPostSync(dev, nelem, a, b, c);
/* Memory clean up */
free(a);
free(b);
free(c);
return ((ret1 == EXIT_SUCCESS && ret2 == EXIT_SUCCESS) ? EXIT_SUCCESS
: EXIT_FAILURE);
}
|