1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample demonstrates peer-to-peer access of stream ordered memory
* allocated with cudaMallocAsync and cudaMemPool family of APIs through simple
* kernel which does peer-to-peer to access & scales vector elements.
*/
// System includes
#include <assert.h>
#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <utility>
// CUDA runtime
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_cuda.h>
#include <helper_functions.h>
// Simple kernel to demonstrate copying cudaMallocAsync memory via P2P to peer
// device
__global__ void copyP2PAndScale(const int *src, int *dst, int N) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N) {
// scale & store src vector.
dst[idx] = 2 * src[idx];
}
}
// Map of device version to device number
std::multimap<std::pair<int, int>, int> getIdenticalGPUs() {
int numGpus = 0;
checkCudaErrors(cudaGetDeviceCount(&numGpus));
std::multimap<std::pair<int, int>, int> identicalGpus;
for (int i = 0; i < numGpus; i++) {
int isMemPoolSupported = 0;
checkCudaErrors(cudaDeviceGetAttribute(&isMemPoolSupported,
cudaDevAttrMemoryPoolsSupported, i));
// Filter unsupported devices
if (isMemPoolSupported) {
int major = 0, minor = 0;
checkCudaErrors(
cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, i));
checkCudaErrors(
cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, i));
identicalGpus.emplace(std::make_pair(major, minor), i);
}
}
return identicalGpus;
}
std::pair<int, int> getP2PCapableGpuPair() {
constexpr size_t kNumGpusRequired = 2;
auto gpusByArch = getIdenticalGPUs();
auto it = gpusByArch.begin();
auto end = gpusByArch.end();
auto bestFit = std::make_pair(it, it);
// use std::distance to find the largest number of GPUs amongst architectures
auto distance = [](decltype(bestFit) p) {
return std::distance(p.first, p.second);
};
// Read each unique key/pair element in order
for (; it != end; it = gpusByArch.upper_bound(it->first)) {
// first and second are iterators bounded within the architecture group
auto testFit = gpusByArch.equal_range(it->first);
// Always use devices with highest architecture version or whichever has the
// most devices available
if (distance(bestFit) <= distance(testFit)) bestFit = testFit;
}
if (distance(bestFit) < kNumGpusRequired) {
printf(
"No Two or more GPUs with same architecture capable of cuda Memory "
"Pools found."
"\nWaiving the sample\n");
exit(EXIT_WAIVED);
}
std::set<int> bestFitDeviceIds;
// check & select peer-to-peer access capable GPU devices.
int devIds[2];
for (auto itr = bestFit.first; itr != bestFit.second; itr++) {
int deviceId = itr->second;
checkCudaErrors(cudaSetDevice(deviceId));
std::for_each(itr, bestFit.second, [&deviceId, &bestFitDeviceIds,
&kNumGpusRequired](
decltype(*itr) mapPair) {
if (deviceId != mapPair.second) {
int access = 0;
checkCudaErrors(
cudaDeviceCanAccessPeer(&access, deviceId, mapPair.second));
printf("Device=%d %s Access Peer Device=%d\n", deviceId,
access ? "CAN" : "CANNOT", mapPair.second);
if (access && bestFitDeviceIds.size() < kNumGpusRequired) {
bestFitDeviceIds.emplace(deviceId);
bestFitDeviceIds.emplace(mapPair.second);
} else {
printf("Ignoring device %i (max devices exceeded)\n", mapPair.second);
}
}
});
if (bestFitDeviceIds.size() >= kNumGpusRequired) {
printf("Selected p2p capable devices - ");
int i = 0;
for (auto devicesItr = bestFitDeviceIds.begin();
devicesItr != bestFitDeviceIds.end(); devicesItr++) {
devIds[i++] = *devicesItr;
printf("deviceId = %d ", *devicesItr);
}
printf("\n");
break;
}
}
// if bestFitDeviceIds.size() == 0 it means the GPUs in system are not p2p
// capable, hence we add it without p2p capability check.
if (!bestFitDeviceIds.size()) {
printf("No Two or more Devices p2p capable found.. exiting..\n");
exit(EXIT_WAIVED);
}
auto p2pGpuPair = std::make_pair(devIds[0], devIds[1]);
return p2pGpuPair;
}
int memPoolP2PCopy() {
int *dev0_srcVec, *dev1_dstVec; // Device buffers
cudaStream_t stream1, stream2;
cudaMemPool_t memPool;
cudaEvent_t waitOnStream1;
// Allocate CPU memory.
size_t nelem = 1048576;
size_t bytes = nelem * sizeof(int);
int *a = (int *)malloc(bytes);
int *output = (int *)malloc(bytes);
/* Initialize the vectors. */
for (int n = 0; n < nelem; n++) {
a[n] = rand() / (int)RAND_MAX;
}
auto p2pDevices = getP2PCapableGpuPair();
printf("selected devices = %d & %d\n", p2pDevices.first, p2pDevices.second);
checkCudaErrors(cudaSetDevice(p2pDevices.first));
checkCudaErrors(cudaEventCreate(&waitOnStream1));
checkCudaErrors(cudaStreamCreateWithFlags(&stream1, cudaStreamNonBlocking));
// Get the default mempool for device p2pDevices.first from the pair
checkCudaErrors(cudaDeviceGetDefaultMemPool(&memPool, p2pDevices.first));
// Allocate memory in a stream from the pool set above.
checkCudaErrors(cudaMallocAsync(&dev0_srcVec, bytes, stream1));
checkCudaErrors(
cudaMemcpyAsync(dev0_srcVec, a, bytes, cudaMemcpyHostToDevice, stream1));
checkCudaErrors(cudaEventRecord(waitOnStream1, stream1));
checkCudaErrors(cudaSetDevice(p2pDevices.second));
checkCudaErrors(cudaStreamCreateWithFlags(&stream2, cudaStreamNonBlocking));
// Allocate memory in p2pDevices.second device
checkCudaErrors(cudaMallocAsync(&dev1_dstVec, bytes, stream2));
// Setup peer mappings for p2pDevices.second device
cudaMemAccessDesc desc;
memset(&desc, 0, sizeof(cudaMemAccessDesc));
desc.location.type = cudaMemLocationTypeDevice;
desc.location.id = p2pDevices.second;
desc.flags = cudaMemAccessFlagsProtReadWrite;
checkCudaErrors(cudaMemPoolSetAccess(memPool, &desc, 1));
printf("> copyP2PAndScale kernel running ...\n");
dim3 block(256);
dim3 grid((unsigned int)ceil(nelem / (int)block.x));
checkCudaErrors(cudaStreamWaitEvent(stream2, waitOnStream1));
copyP2PAndScale<<<grid, block, 0, stream2>>>(dev0_srcVec, dev1_dstVec, nelem);
checkCudaErrors(cudaMemcpyAsync(output, dev1_dstVec, bytes,
cudaMemcpyDeviceToHost, stream2));
checkCudaErrors(cudaFreeAsync(dev0_srcVec, stream2));
checkCudaErrors(cudaFreeAsync(dev1_dstVec, stream2));
checkCudaErrors(cudaStreamSynchronize(stream2));
/* Compare the results */
printf("> Checking the results from copyP2PAndScale() ...\n");
for (int n = 0; n < nelem; n++) {
if ((2 * a[n]) != output[n]) {
printf("mismatch i = %d expected = %d val = %d\n", n, 2 * a[n],
output[n]);
return EXIT_FAILURE;
}
}
free(a);
free(output);
checkCudaErrors(cudaStreamDestroy(stream1));
checkCudaErrors(cudaStreamDestroy(stream2));
printf("PASSED\n");
return EXIT_SUCCESS;
}
int main(int argc, char **argv) {
int ret = memPoolP2PCopy();
return ret;
}
|