1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
Parallel reduction
This sample shows how to perform a reduction operation on an array of values
to produce a single value in a single kernel (as opposed to two or more
kernel calls as shown in the "reduction" CUDA Sample). Single-pass
reduction requires global atomic instructions (Compute Capability 1.1 or
later) and the __threadfence() intrinsic (CUDA 2.2 or later).
Reductions are a very common computation in parallel algorithms. Any time
an array of values needs to be reduced to a single value using a binary
associative operator, a reduction can be used. Example applications include
statistics computations such as mean and standard deviation, and image
processing applications such as finding the total luminance of an
image.
This code performs sum reductions, but any associative operator such as
min() or max() could also be used.
It assumes the input size is a power of 2.
COMMAND LINE ARGUMENTS
"--shmoo": Test performance for 1 to 32M elements with each of the
7 different kernels
"--n=<N>": Specify the number of elements to reduce (default 1048576)
"--threads=<N>": Specify the number of threads per block (default 128)
"--maxblocks=<N>": Specify the maximum number of thread blocks to launch
(kernel 6 only, default 64)
"--cpufinal": Read back the per-block results and do final sum of block
sums on CPU (default false)
"--cputhresh=<N>": The threshold of number of blocks sums below which to
perform a CPU final reduction (default 1)
"--multipass": Use a multipass reduction instead of a single-pass reduction
*/
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
// includes, project
#include <helper_functions.h>
#include <helper_cuda.h>
#define VERSION_MAJOR (CUDART_VERSION / 1000)
#define VERSION_MINOR (CUDART_VERSION % 100) / 10
const char *sSDKsample = "threadFenceReduction";
#if CUDART_VERSION >= 2020
#include "threadFenceReduction_kernel.cuh"
#else
#pragma comment(user, "CUDA 2.2 is required to build for threadFenceReduction")
#endif
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
bool runTest(int argc, char **argv);
extern "C" {
void reduce(int size, int threads, int blocks, float *d_idata, float *d_odata);
void reduceSinglePass(int size, int threads, int blocks, float *d_idata,
float *d_odata);
}
#if CUDART_VERSION < 2020
void reduce(int size, int threads, int blocks, float *d_idata, float *d_odata) {
printf("reduce(), compiler not supported, aborting tests\n");
}
void reduceSinglePass(int size, int threads, int blocks, float *d_idata,
float *d_odata) {
printf("reduceSinglePass(), compiler not supported, aborting tests\n");
}
#endif
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
cudaDeviceProp deviceProp;
deviceProp.major = 0;
deviceProp.minor = 0;
int dev;
printf("%s Starting...\n\n", sSDKsample);
dev = findCudaDevice(argc, (const char **)argv);
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
printf("GPU Device supports SM %d.%d compute capability\n\n",
deviceProp.major, deviceProp.minor);
bool bTestResult = false;
#if CUDART_VERSION >= 2020
bTestResult = runTest(argc, argv);
#else
print_NVCC_min_spec(sSDKsample, "2.2", "Version 185");
exit(EXIT_SUCCESS);
#endif
exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
}
////////////////////////////////////////////////////////////////////////////////
//! Compute sum reduction on CPU
//! We use Kahan summation for an accurate sum of large arrays.
//! http://en.wikipedia.org/wiki/Kahan_summation_algorithm
//!
//! @param data pointer to input data
//! @param size number of input data elements
////////////////////////////////////////////////////////////////////////////////
template <class T>
T reduceCPU(T *data, int size) {
T sum = data[0];
T c = (T)0.0;
for (int i = 1; i < size; i++) {
T y = data[i] - c;
T t = sum + y;
c = (t - sum) - y;
sum = t;
}
return sum;
}
unsigned int nextPow2(unsigned int x) {
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return ++x;
}
////////////////////////////////////////////////////////////////////////////////
// Compute the number of threads and blocks to use for the reduction
// We set threads / block to the minimum of maxThreads and n/2.
////////////////////////////////////////////////////////////////////////////////
void getNumBlocksAndThreads(int n, int maxBlocks, int maxThreads, int &blocks,
int &threads) {
if (n == 1) {
threads = 1;
blocks = 1;
} else {
threads = (n < maxThreads * 2) ? nextPow2(n / 2) : maxThreads;
blocks = max(1, n / (threads * 2));
}
blocks = min(maxBlocks, blocks);
}
////////////////////////////////////////////////////////////////////////////////
// This function performs a reduction of the input data multiple times and
// measures the average reduction time.
////////////////////////////////////////////////////////////////////////////////
float benchmarkReduce(int n, int numThreads, int numBlocks, int maxThreads,
int maxBlocks, int testIterations, bool multiPass,
bool cpuFinalReduction, int cpuFinalThreshold,
StopWatchInterface *timer, float *h_odata, float *d_idata,
float *d_odata) {
float gpu_result = 0;
bool bNeedReadback = true;
cudaError_t error;
for (int i = 0; i < testIterations; ++i) {
gpu_result = 0;
unsigned int retCnt = 0;
error = setRetirementCount(retCnt);
checkCudaErrors(error);
cudaDeviceSynchronize();
sdkStartTimer(&timer);
if (multiPass) {
// execute the kernel
reduce(n, numThreads, numBlocks, d_idata, d_odata);
// check if kernel execution generated an error
getLastCudaError("Kernel execution failed");
if (cpuFinalReduction) {
// sum partial sums from each block on CPU
// copy result from device to host
error = cudaMemcpy(h_odata, d_odata, numBlocks * sizeof(float),
cudaMemcpyDeviceToHost);
checkCudaErrors(error);
for (int i = 0; i < numBlocks; i++) {
gpu_result += h_odata[i];
}
bNeedReadback = false;
} else {
// sum partial block sums on GPU
int s = numBlocks;
while (s > cpuFinalThreshold) {
int threads = 0, blocks = 0;
getNumBlocksAndThreads(s, maxBlocks, maxThreads, blocks, threads);
reduce(s, threads, blocks, d_odata, d_odata);
s = s / (threads * 2);
}
if (s > 1) {
// copy result from device to host
error = cudaMemcpy(h_odata, d_odata, s * sizeof(float),
cudaMemcpyDeviceToHost);
checkCudaErrors(error);
for (int i = 0; i < s; i++) {
gpu_result += h_odata[i];
}
bNeedReadback = false;
}
}
} else {
getLastCudaError("Kernel execution failed");
// execute the kernel
reduceSinglePass(n, numThreads, numBlocks, d_idata, d_odata);
// check if kernel execution generated an error
getLastCudaError("Kernel execution failed");
}
cudaDeviceSynchronize();
sdkStopTimer(&timer);
}
if (bNeedReadback) {
// copy final sum from device to host
error =
cudaMemcpy(&gpu_result, d_odata, sizeof(float), cudaMemcpyDeviceToHost);
checkCudaErrors(error);
}
return gpu_result;
}
////////////////////////////////////////////////////////////////////////////////
// This function calls benchmarkReduce multiple times for a range of array sizes
// and prints a report in CSV (comma-separated value) format that can be used
// for generating a "shmoo" plot showing the performance for each kernel
// variation over a wide range of input sizes.
////////////////////////////////////////////////////////////////////////////////
void shmoo(int minN, int maxN, int maxThreads, int maxBlocks) {
// create random input data on CPU
unsigned int bytes = maxN * sizeof(float);
float *h_idata = (float *)malloc(bytes);
for (int i = 0; i < maxN; i++) {
// Keep the numbers small so we don't get truncation error in the sum
h_idata[i] = (rand() & 0xFF) / (float)RAND_MAX;
}
int maxNumBlocks = min(65535, maxN / maxThreads);
// allocate mem for the result on host side
float *h_odata = (float *)malloc(maxNumBlocks * sizeof(float));
// allocate device memory and data
float *d_idata = NULL;
float *d_odata = NULL;
checkCudaErrors(cudaMalloc((void **)&d_idata, bytes));
checkCudaErrors(cudaMalloc((void **)&d_odata, maxNumBlocks * sizeof(float)));
// copy data directly to device memory
checkCudaErrors(cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_odata, h_idata, maxNumBlocks * sizeof(float),
cudaMemcpyHostToDevice));
// warm-up
reduce(maxN, maxThreads, maxNumBlocks, d_idata, d_odata);
int testIterations = 100;
StopWatchInterface *timer = NULL;
sdkCreateTimer(&timer);
// print headers
printf("N, %d blocks one pass, %d blocks multipass\n", maxBlocks, maxBlocks);
for (int i = minN; i <= maxN; i *= 2) {
printf("%d, ", i);
for (int multiPass = 0; multiPass <= 1; multiPass++) {
sdkResetTimer(&timer);
int numBlocks = 0;
int numThreads = 0;
getNumBlocksAndThreads(i, maxBlocks, maxThreads, numBlocks, numThreads);
benchmarkReduce(i, numThreads, numBlocks, maxThreads, maxBlocks,
testIterations, multiPass == 1, false, 1, timer, h_odata,
d_idata, d_odata);
float reduceTime = sdkGetAverageTimerValue(&timer);
printf("%f%s", reduceTime, multiPass == 0 ? ", " : "\n");
}
}
printf("\n");
// cleanup
sdkDeleteTimer(&timer);
free(h_idata);
free(h_odata);
cudaFree(d_idata);
cudaFree(d_odata);
}
////////////////////////////////////////////////////////////////////////////////
// The main function which runs the reduction test.
////////////////////////////////////////////////////////////////////////////////
bool runTest(int argc, char **argv) {
int size = 1 << 20; // number of elements to reduce
int maxThreads = 128; // number of threads per block
int maxBlocks = 64;
bool cpuFinalReduction = false;
int cpuFinalThreshold = 1;
bool multipass = false;
bool bTestResult = false;
if (checkCmdLineFlag(argc, (const char **)argv, "n")) {
size = getCmdLineArgumentInt(argc, (const char **)argv, "n");
}
if (checkCmdLineFlag(argc, (const char **)argv, "threads")) {
maxThreads = getCmdLineArgumentInt(argc, (const char **)argv, "threads");
}
if (checkCmdLineFlag(argc, (const char **)argv, "maxblocks")) {
maxBlocks = getCmdLineArgumentInt(argc, (const char **)argv, "maxblocks");
}
printf("%d elements\n", size);
printf("%d threads (max)\n", maxThreads);
cpuFinalReduction = checkCmdLineFlag(argc, (const char **)argv, "cpufinal");
multipass = checkCmdLineFlag(argc, (const char **)argv, "multipass");
if (checkCmdLineFlag(argc, (const char **)argv, "cputhresh")) {
cpuFinalThreshold =
getCmdLineArgumentInt(argc, (const char **)argv, "cputhresh");
}
bool runShmoo = checkCmdLineFlag(argc, (const char **)argv, "shmoo");
if (runShmoo) {
shmoo(1, 33554432, maxThreads, maxBlocks);
} else {
// create random input data on CPU
unsigned int bytes = size * sizeof(float);
float *h_idata = (float *)malloc(bytes);
for (int i = 0; i < size; i++) {
// Keep the numbers small so we don't get truncation error in the sum
h_idata[i] = (rand() & 0xFF) / (float)RAND_MAX;
}
int numBlocks = 0;
int numThreads = 0;
getNumBlocksAndThreads(size, maxBlocks, maxThreads, numBlocks, numThreads);
if (numBlocks == 1) {
cpuFinalThreshold = 1;
}
// allocate mem for the result on host side
float *h_odata = (float *)malloc(numBlocks * sizeof(float));
printf("%d blocks\n", numBlocks);
// allocate device memory and data
float *d_idata = NULL;
float *d_odata = NULL;
checkCudaErrors(cudaMalloc((void **)&d_idata, bytes));
checkCudaErrors(cudaMalloc((void **)&d_odata, numBlocks * sizeof(float)));
// copy data directly to device memory
checkCudaErrors(
cudaMemcpy(d_idata, h_idata, bytes, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_odata, h_idata, numBlocks * sizeof(float),
cudaMemcpyHostToDevice));
// warm-up
reduce(size, numThreads, numBlocks, d_idata, d_odata);
int testIterations = 100;
StopWatchInterface *timer = 0;
sdkCreateTimer(&timer);
float gpu_result = 0;
gpu_result =
benchmarkReduce(size, numThreads, numBlocks, maxThreads, maxBlocks,
testIterations, multipass, cpuFinalReduction,
cpuFinalThreshold, timer, h_odata, d_idata, d_odata);
float reduceTime = sdkGetAverageTimerValue(&timer);
printf("Average time: %f ms\n", reduceTime);
printf("Bandwidth: %f GB/s\n\n",
(size * sizeof(int)) / (reduceTime * 1.0e6));
// compute reference solution
float cpu_result = reduceCPU<float>(h_idata, size);
printf("GPU result = %0.12f\n", gpu_result);
printf("CPU result = %0.12f\n", cpu_result);
double threshold = 1e-8 * size;
double diff = abs((double)gpu_result - (double)cpu_result);
bTestResult = (diff < threshold);
// cleanup
sdkDeleteTimer(&timer);
free(h_idata);
free(h_odata);
cudaFree(d_idata);
cudaFree(d_odata);
}
return bTestResult;
}
|