1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
////////////////////////////////////////////////////////////////////////////////
//
// cdpAdvancedQuicksort.cu
//
// Implementation of a parallel quicksort in CUDA. It comes in
// several parts:
//
// 1. A small-set insertion sort. We do this on any set with <=32 elements
// 2. A partitioning kernel, which - given a pivot - separates an input
// array into elements <=pivot, and >pivot. Two quicksorts will then
// be launched to resolve each of these.
// 3. A quicksort co-ordinator, which figures out what kernels to launch
// and when.
//
////////////////////////////////////////////////////////////////////////////////
#include <thrust/random.h>
#include <thrust/device_vector.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <helper_cuda.h>
#include <helper_string.h>
#include "cdpQuicksort.h"
////////////////////////////////////////////////////////////////////////////////
// Inline PTX call to return index of highest non-zero bit in a word
////////////////////////////////////////////////////////////////////////////////
static __device__ __forceinline__ unsigned int __qsflo(unsigned int word) {
unsigned int ret;
asm volatile("bfind.u32 %0, %1;" : "=r"(ret) : "r"(word));
return ret;
}
////////////////////////////////////////////////////////////////////////////////
//
// ringbufAlloc
//
// Allocates from a ringbuffer. Allows for not failing when we run out
// of stack for tracking the offset counts for each sort subsection.
//
// We use the atomicMax trick to allow out-of-order retirement. If we
// hit the size limit on the ringbuffer, then we spin-wait for people
// to complete.
//
////////////////////////////////////////////////////////////////////////////////
template <typename T>
static __device__ T *ringbufAlloc(qsortRingbuf *ringbuf) {
// Wait for there to be space in the ring buffer. We'll retry only a fixed
// number of times and then fail, to avoid an out-of-memory deadlock.
unsigned int loop = 10000;
while (((ringbuf->head - ringbuf->tail) >= ringbuf->stacksize) &&
(loop-- > 0))
;
if (loop == 0) return NULL;
// Note that the element includes a little index book-keeping, for freeing
// later.
unsigned int index = atomicAdd((unsigned int *)&ringbuf->head, 1);
T *ret = (T *)(ringbuf->stackbase) + (index & (ringbuf->stacksize - 1));
ret->index = index;
return ret;
}
////////////////////////////////////////////////////////////////////////////////
//
// ringBufFree
//
// Releases an element from the ring buffer. If every element is released
// up to and including this one, we can advance the tail to indicate that
// space is now available.
//
////////////////////////////////////////////////////////////////////////////////
template <typename T>
static __device__ void ringbufFree(qsortRingbuf *ringbuf, T *data) {
unsigned int index = data->index; // Non-wrapped index to free
unsigned int count = atomicAdd((unsigned int *)&(ringbuf->count), 1) + 1;
unsigned int max = atomicMax((unsigned int *)&(ringbuf->max), index + 1);
// Update the tail if need be. Note we update "max" to be the new value in
// ringbuf->max
if (max < (index + 1)) max = index + 1;
if (max == count) atomicMax((unsigned int *)&(ringbuf->tail), count);
}
////////////////////////////////////////////////////////////////////////////////
//
// qsort_warp
//
// Simplest possible implementation, does a per-warp quicksort with no
// inter-warp
// communication. This has a high atomic issue rate, but the rest should
// actually
// be fairly quick because of low work per thread.
//
// A warp finds its section of the data, then writes all data <pivot to one
// buffer and all data >pivot to the other. Atomics are used to get a unique
// section of the buffer.
//
// Obvious optimisation: do multiple chunks per warp, to increase in-flight
// loads
// and cover the instruction overhead.
//
////////////////////////////////////////////////////////////////////////////////
__global__ void qsort_warp(unsigned *indata, unsigned *outdata,
unsigned int offset, unsigned int len,
qsortAtomicData *atomicData,
qsortRingbuf *atomicDataStack,
unsigned int source_is_indata, unsigned int depth) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
// Find my data offset, based on warp ID
unsigned int thread_id = threadIdx.x + (blockIdx.x << QSORT_BLOCKSIZE_SHIFT);
// unsigned int warp_id = threadIdx.x >> 5; // Used for debug only
unsigned int lane_id = threadIdx.x & (warpSize - 1);
// Exit if I'm outside the range of sort to be done
if (thread_id >= len) return;
//
// First part of the algorithm. Each warp counts the number of elements that
// are
// greater/less than the pivot.
//
// When a warp knows its count, it updates an atomic counter.
//
// Read in the data and the pivot. Arbitrary pivot selection for now.
unsigned pivot = indata[offset + len / 2];
unsigned data = indata[offset + thread_id];
// Count how many are <= and how many are > pivot.
// If all are <= pivot then we adjust the comparison
// because otherwise the sort will move nothing and
// we'll iterate forever.
cg::coalesced_group active = cg::coalesced_threads();
unsigned int greater = (data > pivot);
unsigned int gt_mask = active.ballot(greater);
if (gt_mask == 0) {
greater = (data >= pivot);
gt_mask = active.ballot(greater); // Must re-ballot for adjusted comparator
}
unsigned int lt_mask = active.ballot(!greater);
unsigned int gt_count = __popc(gt_mask);
unsigned int lt_count = __popc(lt_mask);
// Atomically adjust the lt_ and gt_offsets by this amount. Only one thread
// need do this. Share the result using shfl
unsigned int lt_offset, gt_offset;
if (lane_id == 0) {
if (lt_count > 0)
lt_offset = atomicAdd((unsigned int *)&atomicData->lt_offset, lt_count);
if (gt_count > 0)
gt_offset =
len - (atomicAdd((unsigned int *)&atomicData->gt_offset, gt_count) +
gt_count);
}
lt_offset =
active.shfl((int)lt_offset, 0); // Everyone pulls the offsets from lane 0
gt_offset = active.shfl((int)gt_offset, 0);
// Now compute my own personal offset within this. I need to know how many
// threads with a lane ID less than mine are going to write to the same buffer
// as me. We can use popc to implement a single-operation warp scan in this
// case.
unsigned lane_mask_lt;
asm("mov.u32 %0, %%lanemask_lt;" : "=r"(lane_mask_lt));
unsigned int my_mask = greater ? gt_mask : lt_mask;
unsigned int my_offset = __popc(my_mask & lane_mask_lt);
// Move data.
my_offset += greater ? gt_offset : lt_offset;
outdata[offset + my_offset] = data;
// Count up if we're the last warp in. If so, then Kepler will launch the next
// set of sorts directly from here.
if (lane_id == 0) {
// Count "elements written". If I wrote the last one, then trigger the next
// qsorts
unsigned int mycount = lt_count + gt_count;
if (atomicAdd((unsigned int *)&atomicData->sorted_count, mycount) +
mycount ==
len) {
// We're the last warp to do any sorting. Therefore it's up to us to
// launch the next stage.
unsigned int lt_len = atomicData->lt_offset;
unsigned int gt_len = atomicData->gt_offset;
cudaStream_t lstream, rstream;
cudaStreamCreateWithFlags(&lstream, cudaStreamNonBlocking);
cudaStreamCreateWithFlags(&rstream, cudaStreamNonBlocking);
// Begin by freeing our atomicData storage. It's better for the ringbuffer
// algorithm
// if we free when we're done, rather than re-using (makes for less
// fragmentation).
ringbufFree<qsortAtomicData>(atomicDataStack, atomicData);
// Exceptional case: if "lt_len" is zero, then all values in the batch
// are equal. We are then done (may need to copy into correct buffer,
// though)
if (lt_len == 0) {
if (source_is_indata)
cudaMemcpyAsync(indata + offset, outdata + offset,
gt_len * sizeof(unsigned), cudaMemcpyDeviceToDevice,
lstream);
return;
}
// Start with lower half first
if (lt_len > BITONICSORT_LEN) {
// If we've exceeded maximum depth, fall through to backup
// big_bitonicsort
if (depth >= QSORT_MAXDEPTH) {
// The final bitonic stage sorts in-place in "outdata". We therefore
// re-use "indata" as the out-of-range tracking buffer. For (2^n)+1
// elements we need (2^(n+1)) bytes of oor buffer. The backup qsort
// buffer is at least this large when sizeof(QTYPE) >= 2.
big_bitonicsort<<<1, BITONICSORT_LEN, 0, lstream>>>(
outdata, source_is_indata ? indata : outdata, indata, offset,
lt_len);
} else {
// Launch another quicksort. We need to allocate more storage for the
// atomic data.
if ((atomicData = ringbufAlloc<qsortAtomicData>(atomicDataStack)) ==
NULL)
printf("Stack-allocation error. Failing left child launch.\n");
else {
atomicData->lt_offset = atomicData->gt_offset =
atomicData->sorted_count = 0;
unsigned int numblocks =
(unsigned int)(lt_len + (QSORT_BLOCKSIZE - 1)) >>
QSORT_BLOCKSIZE_SHIFT;
qsort_warp<<<numblocks, QSORT_BLOCKSIZE, 0, lstream>>>(
outdata, indata, offset, lt_len, atomicData, atomicDataStack,
!source_is_indata, depth + 1);
}
}
} else if (lt_len > 1) {
// Final stage uses a bitonic sort instead. It's important to
// make sure the final stage ends up in the correct (original) buffer.
// We launch the smallest power-of-2 number of threads that we can.
unsigned int bitonic_len = 1 << (__qsflo(lt_len - 1U) + 1);
bitonicsort<<<1, bitonic_len, 0, lstream>>>(
outdata, source_is_indata ? indata : outdata, offset, lt_len);
}
// Finally, if we sorted just one single element, we must still make
// sure that it winds up in the correct place.
else if (source_is_indata && (lt_len == 1))
indata[offset] = outdata[offset];
if (cudaPeekAtLastError() != cudaSuccess)
printf("Left-side launch fail: %s\n",
cudaGetErrorString(cudaGetLastError()));
// Now the upper half.
if (gt_len > BITONICSORT_LEN) {
// If we've exceeded maximum depth, fall through to backup
// big_bitonicsort
if (depth >= QSORT_MAXDEPTH)
big_bitonicsort<<<1, BITONICSORT_LEN, 0, rstream>>>(
outdata, source_is_indata ? indata : outdata, indata,
offset + lt_len, gt_len);
else {
// Allocate new atomic storage for this launch
if ((atomicData = ringbufAlloc<qsortAtomicData>(atomicDataStack)) ==
NULL)
printf("Stack allocation error! Failing right-side launch.\n");
else {
atomicData->lt_offset = atomicData->gt_offset =
atomicData->sorted_count = 0;
unsigned int numblocks =
(unsigned int)(gt_len + (QSORT_BLOCKSIZE - 1)) >>
QSORT_BLOCKSIZE_SHIFT;
qsort_warp<<<numblocks, QSORT_BLOCKSIZE, 0, rstream>>>(
outdata, indata, offset + lt_len, gt_len, atomicData,
atomicDataStack, !source_is_indata, depth + 1);
}
}
} else if (gt_len > 1) {
unsigned int bitonic_len = 1 << (__qsflo(gt_len - 1U) + 1);
bitonicsort<<<1, bitonic_len, 0, rstream>>>(
outdata, source_is_indata ? indata : outdata, offset + lt_len,
gt_len);
} else if (source_is_indata && (gt_len == 1))
indata[offset + lt_len] = outdata[offset + lt_len];
if (cudaPeekAtLastError() != cudaSuccess)
printf("Right-side launch fail: %s\n",
cudaGetErrorString(cudaGetLastError()));
}
}
}
////////////////////////////////////////////////////////////////////////////////
//
// run_quicksort
//
// Host-side code to run the Kepler version of quicksort. It's pretty
// simple, because all launch control is handled on the device via CDP.
//
// All parallel quicksorts require an equal-sized scratch buffer. This
// must be passed in ahead of time.
//
// Returns the time elapsed for the sort.
//
////////////////////////////////////////////////////////////////////////////////
float run_quicksort_cdp(unsigned *gpudata, unsigned *scratchdata,
unsigned int count, cudaStream_t stream) {
unsigned int stacksize = QSORT_STACK_ELEMS;
// This is the stack, for atomic tracking of each sort's status
qsortAtomicData *gpustack;
checkCudaErrors(
cudaMalloc((void **)&gpustack, stacksize * sizeof(qsortAtomicData)));
checkCudaErrors(cudaMemset(
gpustack, 0, sizeof(qsortAtomicData))); // Only need set first entry to 0
// Create the memory ringbuffer used for handling the stack.
// Initialise everything to where it needs to be.
qsortRingbuf buf;
qsortRingbuf *ringbuf;
checkCudaErrors(cudaMalloc((void **)&ringbuf, sizeof(qsortRingbuf)));
buf.head = 1; // We start with one allocation
buf.tail = 0;
buf.count = 0;
buf.max = 0;
buf.stacksize = stacksize;
buf.stackbase = gpustack;
checkCudaErrors(
cudaMemcpy(ringbuf, &buf, sizeof(buf), cudaMemcpyHostToDevice));
// Timing events...
cudaEvent_t ev1, ev2;
checkCudaErrors(cudaEventCreate(&ev1));
checkCudaErrors(cudaEventCreate(&ev2));
checkCudaErrors(cudaEventRecord(ev1));
// Now we trivially launch the qsort kernel
if (count > BITONICSORT_LEN) {
unsigned int numblocks =
(unsigned int)(count + (QSORT_BLOCKSIZE - 1)) >> QSORT_BLOCKSIZE_SHIFT;
qsort_warp<<<numblocks, QSORT_BLOCKSIZE, 0, stream>>>(
gpudata, scratchdata, 0U, count, gpustack, ringbuf, true, 0);
} else {
bitonicsort<<<1, BITONICSORT_LEN>>>(gpudata, gpudata, 0, count);
}
checkCudaErrors(cudaGetLastError());
checkCudaErrors(cudaEventRecord(ev2));
checkCudaErrors(cudaDeviceSynchronize());
float elapse = 0.0f;
if (cudaPeekAtLastError() != cudaSuccess)
printf("Launch failure: %s\n", cudaGetErrorString(cudaGetLastError()));
else
checkCudaErrors(cudaEventElapsedTime(&elapse, ev1, ev2));
// Sanity check that the stack allocator is doing the right thing
checkCudaErrors(
cudaMemcpy(&buf, ringbuf, sizeof(*ringbuf), cudaMemcpyDeviceToHost));
if (count > BITONICSORT_LEN && buf.head != buf.tail) {
printf("Stack allocation error!\nRingbuf:\n");
printf("\t head = %u\n", buf.head);
printf("\t tail = %u\n", buf.tail);
printf("\tcount = %u\n", buf.count);
printf("\t max = %u\n", buf.max);
}
// Release our stack data once we're done
checkCudaErrors(cudaFree(ringbuf));
checkCudaErrors(cudaFree(gpustack));
return elapse;
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
int run_qsort(unsigned int size, int seed, int debug, int loop, int verbose) {
if (seed > 0) srand(seed);
// Create and set up our test
unsigned *gpudata, *scratchdata;
checkCudaErrors(cudaMalloc((void **)&gpudata, size * sizeof(unsigned)));
checkCudaErrors(cudaMalloc((void **)&scratchdata, size * sizeof(unsigned)));
// Create CPU data.
unsigned *data = new unsigned[size];
unsigned int min = loop ? loop : size;
unsigned int max = size;
loop = (loop == 0) ? 1 : loop;
for (size = min; size <= max; size += loop) {
if (verbose) printf(" Input: ");
for (unsigned int i = 0; i < size; i++) {
// Build data 8 bits at a time
data[i] = 0;
char *ptr = (char *)&(data[i]);
for (unsigned j = 0; j < sizeof(unsigned); j++) {
// Easy-to-read data in debug mode
if (debug) {
*ptr++ = (char)(rand() % 10);
break;
}
*ptr++ = (char)(rand() & 255);
}
if (verbose) {
if (i && !(i % 32)) printf("\n ");
printf("%u ", data[i]);
}
}
if (verbose) printf("\n");
checkCudaErrors(cudaMemcpy(gpudata, data, size * sizeof(unsigned),
cudaMemcpyHostToDevice));
// So we're now populated and ready to go! We size our launch as
// blocks of up to BLOCKSIZE threads, and appropriate grid size.
// One thread is launched per element.
float elapse;
elapse = run_quicksort_cdp(gpudata, scratchdata, size, NULL);
// run_bitonicsort<SORTTYPE>(gpudata, scratchdata, size, verbose);
checkCudaErrors(cudaDeviceSynchronize());
// Copy back the data and verify correct sort
checkCudaErrors(cudaMemcpy(data, gpudata, size * sizeof(unsigned),
cudaMemcpyDeviceToHost));
if (verbose) {
printf("Output: ");
for (unsigned int i = 0; i < size; i++) {
if (i && !(i % 32)) printf("\n ");
printf("%u ", data[i]);
}
printf("\n");
}
unsigned int check;
for (check = 1; check < size; check++) {
if (data[check] < data[check - 1]) {
printf("FAILED at element: %d\n", check);
break;
}
}
if (check != size) {
printf(" cdpAdvancedQuicksort FAILED\n");
exit(EXIT_FAILURE);
} else
printf(" cdpAdvancedQuicksort PASSED\n");
// Display the time between event recordings
printf("Sorted %u elems in %.3f ms (%.3f Melems/sec)\n", size, elapse,
(float)size / (elapse * 1000.0f));
fflush(stdout);
}
// Release everything and we're done
checkCudaErrors(cudaFree(scratchdata));
checkCudaErrors(cudaFree(gpudata));
delete (data);
return 0;
}
static void usage() {
printf(
"Syntax: cdpAdvancedQuicksort [-size=<num>] [-seed=<num>] [-debug] "
"[-loop-step=<num>] [-verbose]\n");
printf(
"If loop_step is non-zero, will run from 1->array_len in steps of "
"loop_step\n");
}
// Host side entry
int main(int argc, char *argv[]) {
int size = 1000000;
unsigned int seed = 0;
int debug = 0;
int loop = 0;
int verbose = 0;
if (checkCmdLineFlag(argc, (const char **)argv, "help") ||
checkCmdLineFlag(argc, (const char **)argv, "h")) {
usage();
printf("&&&& cdpAdvancedQuicksort WAIVED\n");
exit(EXIT_WAIVED);
}
if (checkCmdLineFlag(argc, (const char **)argv, "size")) {
size = getCmdLineArgumentInt(argc, (const char **)argv, "size");
}
if (checkCmdLineFlag(argc, (const char **)argv, "seed")) {
seed = getCmdLineArgumentInt(argc, (const char **)argv, "seed");
}
if (checkCmdLineFlag(argc, (const char **)argv, "loop-step")) {
loop = getCmdLineArgumentInt(argc, (const char **)argv, "loop-step");
}
if (checkCmdLineFlag(argc, (const char **)argv, "debug")) {
debug = 1;
}
if (checkCmdLineFlag(argc, (const char **)argv, "verbose")) {
verbose = 1;
}
// Get device properties
int cuda_device = findCudaDevice(argc, (const char **)argv);
cudaDeviceProp properties;
checkCudaErrors(cudaGetDeviceProperties(&properties, cuda_device));
int cdpCapable =
(properties.major == 3 && properties.minor >= 5) || properties.major >= 4;
printf("GPU device %s has compute capabilities (SM %d.%d)\n", properties.name,
properties.major, properties.minor);
if (!cdpCapable) {
printf(
"cdpAdvancedQuicksort requires SM 3.5 or higher to use CUDA Dynamic "
"Parallelism. Exiting...\n");
exit(EXIT_WAIVED);
}
printf("Running qsort on %d elements with seed %d, on %s\n", size, seed,
properties.name);
run_qsort(size, seed, debug, loop, verbose);
exit(EXIT_SUCCESS);
}
|