1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//
// This sample uses the compressible memory allocation if device supports it
// and performs saxpy on it.
// Compressible memory may give better performance if the data is amenable to
// compression.
#include <stdio.h>
#include <cuda.h>
#define CUDA_DRIVER_API
#include "helper_cuda.h"
#include "compMalloc.h"
__global__ void saxpy(const float a, const float4 *x, const float4 *y, float4 *z, const size_t n)
{
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < n; i += gridDim.x * blockDim.x)
{
const float4 x4 = x[i];
const float4 y4 = y[i];
z[i] = make_float4(a * x4.x + y4.x, a * x4.y + y4.y,
a * x4.z + y4.z, a * x4.w + y4.w);
}
}
__global__ void init(float4 *x, float4 *y, const float val, const size_t n)
{
const float4 val4 = make_float4(val, val, val, val);
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < n; i += gridDim.x * blockDim.x)
{
x[i] = y[i] = val4;
}
}
void launchSaxpy(const float a, float4 *x, float4 *y, float4 *z, const size_t n, const float init_val, const bool compressibleZbuf)
{
cudaEvent_t start, stop;
float ms;
int blockSize;
int minGridSize;
dim3 threads, blocks;
if (!compressibleZbuf)
{
// We are on config where compressible buffer can only be initialized through cudaMemcpy
// hence, x & y buffers are allocated as compressible and initialized via cudaMemcpy
// whereas z buffer is allocated as non-compressible.
float4 *h_x = (float4 *) malloc(sizeof(float4) * n);
float4 *h_y = (float4 *) malloc(sizeof(float4) * n);
for (int i = 0; i < n; i++)
{
h_x[i].x = h_x[i].y = h_x[i].z = h_x[i].w = init_val;
h_y[i].x = h_y[i].y = h_y[i].z = h_y[i].w = init_val;
}
checkCudaErrors(cudaMemcpy(x, h_x, sizeof(float4) * n, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(y, h_y, sizeof(float4) * n, cudaMemcpyHostToDevice));
free(h_x);
free(h_y);
}
else
{
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(&minGridSize, &blockSize, (void*)init));
threads = dim3(blockSize, 1, 1);
blocks = dim3(minGridSize, 1, 1);
init<<<blocks, threads>>>(x, y, init_val, n);
}
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(&minGridSize, &blockSize, (void*)saxpy));
threads = dim3(blockSize, 1, 1);
blocks = dim3(minGridSize, 1, 1);
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
checkCudaErrors(cudaEventRecord(start));
saxpy<<<blocks, threads>>>(a, x, y, z, n);
checkCudaErrors(cudaEventRecord(stop));
checkCudaErrors(cudaEventSynchronize(stop));
checkCudaErrors(cudaEventElapsedTime(&ms, start, stop));
const size_t size = n * sizeof(float4);
printf("Running saxpy with %d blocks x %d threads = %.3f ms %.3f TB/s\n", blocks.x, threads.x, ms, (size*3)/ms/1e9);
}
int main(int argc, char **argv)
{
const size_t n = 10485760;
if (checkCmdLineFlag(argc, (const char **)argv, "help") ||
checkCmdLineFlag(argc, (const char **)argv, "?")) {
printf("Usage -device=n (n >= 0 for deviceID)\n");
exit(EXIT_SUCCESS);
}
findCudaDevice(argc, (const char**)argv);
CUdevice currentDevice;
checkCudaErrors(cuCtxGetDevice(¤tDevice));
// Check that the selected device supports virtual memory management
int vmm_supported = -1;
checkCudaErrors(cuDeviceGetAttribute(&vmm_supported,
CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
currentDevice));
if (vmm_supported == 0) {
printf("Device %d doesn't support Virtual Memory Management, waiving the execution.\n", currentDevice);
exit(EXIT_WAIVED);
}
int isCompressionAvailable;
checkCudaErrors(cuDeviceGetAttribute(&isCompressionAvailable,
CU_DEVICE_ATTRIBUTE_GENERIC_COMPRESSION_SUPPORTED,
currentDevice));
if (isCompressionAvailable == 0)
{
printf("Device %d doesn't support Generic memory compression, waiving the execution.\n", currentDevice);
exit(EXIT_WAIVED);
}
printf("Generic memory compression support is available\n");
int major, minor;
checkCudaErrors(cuDeviceGetAttribute(&major,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR,
currentDevice));
checkCudaErrors(cuDeviceGetAttribute(&minor,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR,
currentDevice));
float4 *x, *y, *z;
const size_t size = n * sizeof(float4);
// Allocating compressible memory
checkCudaErrors(allocateCompressible((void **)&x, size, true));
checkCudaErrors(allocateCompressible((void **)&y, size, true));
bool compressibleZbuf = 0;
if ((major == 8 && minor == 0) || (major == 8 && minor == 6))
{
// On SM 8.0 and 8.6 GPUs compressible buffer can only be initialized
// through cudaMemcpy.
printf("allocating non-compressible Z buffer\n");
checkCudaErrors(allocateCompressible((void **)&z, size, false));
compressibleZbuf = 0;
}
else
{
checkCudaErrors(allocateCompressible((void **)&z, size, true));
compressibleZbuf = 1;
}
printf("Running saxpy on %zu bytes of Compressible memory\n", size);
const float a = 1.0f;
const float init_val = 1.0f;
launchSaxpy(a, x, y, z, n, init_val, compressibleZbuf);
checkCudaErrors(freeCompressible(x, size, true));
checkCudaErrors(freeCompressible(y, size, true));
checkCudaErrors(freeCompressible(z, size, true));
printf("Running saxpy on %zu bytes of Non-Compressible memory\n", size);
// Allocating non-compressible memory
checkCudaErrors(allocateCompressible((void **)&x, size, false));
checkCudaErrors(allocateCompressible((void **)&y, size, false));
checkCudaErrors(allocateCompressible((void **)&z, size, false));
launchSaxpy(a, x, y, z, n, init_val, compressibleZbuf);
checkCudaErrors(freeCompressible(x, size, false));
checkCudaErrors(freeCompressible(y, size, false));
checkCudaErrors(freeCompressible(z, size, false));
printf("\nNOTE: The CUDA Samples are not meant for performance measurements. "
"Results may vary when GPU Boost is enabled.\n");
return EXIT_SUCCESS;
}
|