1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* Matrix multiplication: C = A * B.
*
* This sample demonstrates implements matrix multiplication which makes use of
* shared memory to ensure data reuse, the matrix multiplication is done using
* tiling approach.
* With compute capability 8.0 or higher the CUDA kernels involved uses
* asynchronously copy data from global to shared memory; a.k.a., async-copy.
* This sample has been written for clarity of exposition to illustrate various
* CUDA programming principles, not with the goal of providing the most
* performant generic kernel for matrix multiplication.
*/
// System includes
#include <stdio.h>
#include <assert.h>
// CUDA runtime
#include <cuda_runtime.h>
#include <cuda/pipeline>
#if __CUDA_ARCH__ >= 700
#include <cuda/barrier>
#endif
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
// Helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
enum kernels {
AsyncCopyMultiStageLargeChunk = 0,
AsyncCopyLargeChunk = 1,
AsyncCopyLargeChunkAWBarrier = 2,
AsyncCopyMultiStageSharedState = 3,
AsyncCopyMultiStage = 4,
AsyncCopySingleStage = 5,
Naive = 6,
NaiveLargeChunk = 7
};
const char *kernelNames[] = {"AsyncCopyMultiStageLargeChunk",
"AsyncCopyLargeChunk",
"AsyncCopyLargeChunkAWBarrier",
"AsyncCopyMultiStageSharedState",
"AsyncCopyMultiStage",
"AsyncCopySingleStage",
"Naive",
"NaiveLargeChunk"};
constexpr int blockSize = 16;
// Multi Stage memcpy_async pipeline with large chunk copy
template <int BLOCK_SIZE>
__global__ void MatrixMulAsyncCopyMultiStageLargeChunk(
float *__restrict__ C, const float *__restrict__ A,
const float *__restrict__ B, int wA, int wB) {
// Requires BLOCK_SIZE % 4 == 0
// Multi-stage pipeline version
constexpr size_t maxPipelineStages = 4;
// Declaration of the shared memory array As used to
// store the sub-matrix of A for each stage
__shared__ alignas(
alignof(float4)) float As[maxPipelineStages][BLOCK_SIZE][BLOCK_SIZE];
// Declaration of the shared memory array Bs used to
// store the sub-matrix of B for each stage
__shared__ alignas(
alignof(float4)) float Bs[maxPipelineStages][BLOCK_SIZE][BLOCK_SIZE];
float Csub = 0.0;
// Index of the first sub-matrix of A processed by the block
const int aBegin = wA * (BLOCK_SIZE)*blockIdx.y;
// Index of the last sub-matrix of A processed by the block
const int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
const int bBegin = BLOCK_SIZE * blockIdx.x;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;
const int t4x = threadIdx.x * 4;
const auto shape4 = cuda::aligned_size_t<alignof(float4)>(sizeof(float4));
cuda::pipeline<cuda::thread_scope_thread> pipe = cuda::make_pipeline();
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin, i = 0, aStage = aBegin, bStage = bBegin,
iStage = 0;
a <= aEnd; a += aStep, b += bStep, ++i) {
// Load the matrices from device memory to shared memory; each thread loads
// one element of each matrix
for (; aStage <= a + aStep * maxPipelineStages;
aStage += aStep, bStage += bStep, ++iStage) {
pipe.producer_acquire();
if (aStage <= aEnd && t4x < BLOCK_SIZE) {
// Rotating buffer
const int j = iStage % maxPipelineStages;
cuda::memcpy_async(&As[j][threadIdx.y][t4x],
&A[aStage + wA * threadIdx.y + t4x], shape4, pipe);
cuda::memcpy_async(&Bs[j][threadIdx.y][t4x],
&B[aStage + wA * threadIdx.y + t4x], shape4, pipe);
}
pipe.producer_commit();
}
pipe.consumer_wait();
// Synchronize to make sure the matrices are loaded
__syncthreads();
// Rotating buffer
const int j = i % maxPipelineStages;
// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k) {
Csub += As[j][threadIdx.y][k] * Bs[j][k][threadIdx.x];
}
pipe.consumer_release();
// Don't have to synchronize because maxPipelineStages is greater than one
// therefore next iteration is loading to a different buffer.
}
// Write the block sub-matrix to device memory;
// each thread writes four element
int c = wB * BLOCK_SIZE * blockIdx.y + BLOCK_SIZE * blockIdx.x;
C[c + wB * threadIdx.y + threadIdx.x] = Csub;
}
// Single Stage memcpy_async pipeline with Large copy chunk (float4)
template <int BLOCK_SIZE>
__global__ void MatrixMulAsyncCopyLargeChunk(float *__restrict__ C,
const float *__restrict__ A,
const float *__restrict__ B,
int wA, int wB) {
// Requires BLOCK_SIZE % 4 == 0
// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ alignas(alignof(float4)) float As[BLOCK_SIZE][BLOCK_SIZE];
// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ alignas(alignof(float4)) float Bs[BLOCK_SIZE][BLOCK_SIZE];
// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * blockIdx.y;
// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * blockIdx.x;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;
// Single-stage pipeline version
float Csub = 0.0;
const int t4x = threadIdx.x * 4;
const auto shape4 = cuda::aligned_size_t<alignof(float4)>(sizeof(float4));
cuda::pipeline<cuda::thread_scope_thread> pipe = cuda::make_pipeline();
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {
// Load the matrices from device memory to shared memory;
// a subset of threads loads a contiguous chunk of elements.
// Previously, per-thread:
// As[ty][tx] = A[a + wA * ty + tx];
// Bs[ty][tx] = B[b + wB * ty + tx];
// Now, one fourth of the threads load four elements of each matrix
if (t4x < BLOCK_SIZE) {
pipe.producer_acquire();
cuda::memcpy_async(&As[threadIdx.y][t4x], &A[a + wA * threadIdx.y + t4x],
shape4, pipe);
cuda::memcpy_async(&Bs[threadIdx.y][t4x], &B[a + wA * threadIdx.y + t4x],
shape4, pipe);
pipe.producer_commit();
pipe.consumer_wait();
}
// Synchronize to make sure the matrices are loaded
__syncthreads();
// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k) {
Csub += As[threadIdx.y][k] * Bs[k][threadIdx.x];
}
pipe.consumer_release();
// Synchronize to make sure that the preceding
// computation is done before overwriting the
// shared memory sub-matrix buffers As and Bs in the next iteration.
__syncthreads();
}
// Write the block sub-matrix to device memory;
// each thread writes four element
int c = wB * BLOCK_SIZE * blockIdx.y + BLOCK_SIZE * blockIdx.x;
C[c + wB * threadIdx.y + threadIdx.x] = Csub;
}
// Single Stage memcpy_async pipeline with Large copy chunk (float4) using
// arrive-wait barrier
template <int BLOCK_SIZE>
__global__ void MatrixMulAsyncCopyLargeChunkAWBarrier(
float *__restrict__ C, const float *__restrict__ A,
const float *__restrict__ B, int wA, int wB) {
#if __CUDA_ARCH__ >= 700
#pragma diag_suppress static_var_with_dynamic_init
// Requires BLOCK_SIZE % 4 == 0
__shared__ cuda::barrier<cuda::thread_scope_block> bar;
// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ alignas(alignof(float4)) float As[BLOCK_SIZE][BLOCK_SIZE];
// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ alignas(alignof(float4)) float Bs[BLOCK_SIZE][BLOCK_SIZE];
if (threadIdx.x == 0) {
init(&bar, blockDim.x * blockDim.y);
}
__syncthreads();
// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * blockIdx.y;
// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * blockIdx.x;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;
float Csub = 0.0;
const int t4x = threadIdx.x * 4;
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {
// Load the matrices from device memory to shared memory;
// a subset of threads loads a contiguous chunk of elements.
// Now, one fourth of the threads load four elements of each matrix
if (t4x < BLOCK_SIZE) {
float4 *const A4s = reinterpret_cast<float4 *>(&As[threadIdx.y][t4x]);
float4 *const B4s = reinterpret_cast<float4 *>(&Bs[threadIdx.y][t4x]);
const float4 *const A4 =
reinterpret_cast<const float4 *>(&A[a + wA * threadIdx.y + t4x]);
const float4 *const B4 =
reinterpret_cast<const float4 *>(&B[a + wA * threadIdx.y + t4x]);
cuda::memcpy_async(A4s, A4, sizeof(float4), bar);
cuda::memcpy_async(B4s, B4, sizeof(float4), bar);
}
// Synchronize to make sure the matrices are loaded
bar.arrive_and_wait();
// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k) {
Csub += As[threadIdx.y][k] * Bs[k][threadIdx.x];
}
// Synchronize to make sure that the preceding
// computation is done before overwriting the
// shared memory sub-matrix buffers As and Bs in the next iteration.
bar.arrive_and_wait();
}
// Write the block sub-matrix to device memory;
// each thread writes four element
int c = wB * BLOCK_SIZE * blockIdx.y + BLOCK_SIZE * blockIdx.x;
C[c + wB * threadIdx.y + threadIdx.x] = Csub;
#endif
}
// Single Stage memcpy_async pipeline with float copy
template <int BLOCK_SIZE>
__global__ void MatrixMulAsyncCopySingleStage(float *C, const float *A,
const float *B, int wA, int wB) {
// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * blockIdx.y;
// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * blockIdx.x;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;
// Single-stage pipeline version
float Csub = 0.0;
cuda::pipeline<cuda::thread_scope_thread> pipe = cuda::make_pipeline();
const auto shape1 = cuda::aligned_size_t<alignof(float)>(sizeof(float));
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {
// Load the matrices from device memory to shared memory; each thread loads
// one element of each matrix
{
pipe.producer_acquire();
cuda::memcpy_async(&As[threadIdx.y][threadIdx.x],
&A[a + wA * threadIdx.y + threadIdx.x], shape1, pipe);
cuda::memcpy_async(&Bs[threadIdx.y][threadIdx.x],
&B[b + wB * threadIdx.y + threadIdx.x], shape1, pipe);
pipe.producer_commit();
}
pipe.consumer_wait();
// Synchronize to make sure the matrices are loaded
__syncthreads();
// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k) {
Csub += As[threadIdx.y][k] * Bs[k][threadIdx.x];
}
// Synchronize to make sure that the preceding
// computation is done before overwriting the
// shared memory sub-matrix buffers As and Bs in the next iteration.
__syncthreads();
}
// Write the block sub-matrix to device memory;
// each thread writes four element
int c = wB * BLOCK_SIZE * blockIdx.y + BLOCK_SIZE * blockIdx.x;
C[c + wB * threadIdx.y + threadIdx.x] = Csub;
}
// Multi Stage memcpy_async thread_scope_thread pipeline with single-element
// async-copy
template <int BLOCK_SIZE>
__global__ void MatrixMulAsyncCopyMultiStage(float *__restrict__ C,
const float *__restrict__ A,
const float *__restrict__ B,
int wA, int wB) {
// Multi-stage pipeline version
constexpr size_t maxPipelineStages = 4;
// Declaration of the shared memory array As used to
// store the sub-matrix of A for each stage
__shared__ float As[maxPipelineStages][BLOCK_SIZE][BLOCK_SIZE];
// Declaration of the shared memory array Bs used to
// store the sub-matrix of B for each stage
__shared__ float Bs[maxPipelineStages][BLOCK_SIZE][BLOCK_SIZE];
float Csub = 0.0;
// Index of the first sub-matrix of A processed by the block
const int aBegin = wA * BLOCK_SIZE * blockIdx.y;
// Index of the last sub-matrix of A processed by the block
const int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
const int bBegin = BLOCK_SIZE * blockIdx.x;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;
cuda::pipeline<cuda::thread_scope_thread> pipe = cuda::make_pipeline();
const auto shape1 = cuda::aligned_size_t<alignof(float)>(sizeof(float));
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin, i = 0, aStage = aBegin, bStage = bBegin,
iStage = 0;
a <= aEnd; a += aStep, b += bStep, ++i) {
// Load the matrices from device memory to shared memory; each thread loads
// one element of each matrix
for (; aStage <= a + aStep * maxPipelineStages;
aStage += aStep, bStage += bStep, ++iStage) {
if (aStage <= aEnd) {
// Rotating buffer
const int j = iStage % maxPipelineStages;
pipe.producer_acquire();
cuda::memcpy_async(&As[j][threadIdx.y][threadIdx.x],
&A[aStage + wA * threadIdx.y + threadIdx.x], shape1,
pipe);
cuda::memcpy_async(&Bs[j][threadIdx.y][threadIdx.x],
&B[bStage + wB * threadIdx.y + threadIdx.x], shape1,
pipe);
pipe.producer_commit();
}
}
pipe.consumer_wait();
// Synchronize to make sure the matrices are loaded
__syncthreads();
const int j = i % maxPipelineStages;
// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
for (int k = 0; k < BLOCK_SIZE; ++k) {
Csub += As[j][threadIdx.y][k] * Bs[j][k][threadIdx.x];
}
pipe.consumer_release();
// Don't have to synchronize because maxPipelineStages is greater than one
// therefore next iteration is loading to a different buffer.
}
// Write the block sub-matrix to device memory;
// each thread writes four element
int c = wB * BLOCK_SIZE * blockIdx.y + BLOCK_SIZE * blockIdx.x;
C[c + wB * threadIdx.y + threadIdx.x] = Csub;
}
// Multi Stage shared state memcpy_async pipeline thread_scope_block
// with parititioned producer & consumer, here we've 1 warp as producer
// group which issues memcpy_async operations and rest all warps are part of
// consumer group which perform gemm computation on the loaded matrices by
// producer.
template <int BLOCK_SIZE_X>
__global__ void MatrixMulAsyncCopyMultiStageSharedState(
float *__restrict__ C, const float *__restrict__ A,
const float *__restrict__ B, int wA, int wB) {
// Multi-stage pipeline version
constexpr size_t maxPipelineStages = 4;
// Declaration of the shared memory array As used to
// store the sub-matrix of A for each stage
__shared__ float As[maxPipelineStages][BLOCK_SIZE_X][BLOCK_SIZE_X];
// Declaration of the shared memory array Bs used to
// store the sub-matrix of B for each stage
__shared__ float Bs[maxPipelineStages][BLOCK_SIZE_X][BLOCK_SIZE_X];
float Csub = 0.0;
// Index of the first sub-matrix of A processed by the block
const int aBegin = wA * BLOCK_SIZE_X * blockIdx.y;
// Index of the last sub-matrix of A processed by the block
const int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
constexpr int aStep = BLOCK_SIZE_X;
// Index of the first sub-matrix of B processed by the block
const int bBegin = BLOCK_SIZE_X * blockIdx.x;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE_X * wB;
auto cta = cg::this_thread_block();
const auto shape1 = cuda::aligned_size_t<alignof(float)>(sizeof(float));
__shared__ cuda::pipeline_shared_state<cuda::thread_scope_block,
maxPipelineStages> shared_state;
constexpr int consumer_row_count = BLOCK_SIZE_X;
const auto thread_role = (cta.thread_index().y < consumer_row_count)
? cuda::pipeline_role::consumer
: cuda::pipeline_role::producer;
auto pipe = cuda::make_pipeline(cta, &shared_state, thread_role);
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin, i = 0, aStage = aBegin, bStage = bBegin,
iStage = 0;
a <= aEnd; a += aStep, b += bStep, ++i) {
if (threadIdx.y >= consumer_row_count) {
// this is a whole producer warp because threadIdx.y >= 16 where 16 ==
// consumer_row_count,
// which loads the matrices from device memory to shared memory;
for (; aStage <= a + aStep * maxPipelineStages;
aStage += aStep, bStage += bStep, ++iStage) {
if (aStage <= aEnd) {
// Rotating buffer
const int j = iStage % maxPipelineStages;
const int strideRows = (blockDim.y - consumer_row_count);
pipe.producer_acquire();
for (int rowId = threadIdx.y - consumer_row_count;
rowId < BLOCK_SIZE_X; rowId += strideRows) {
cuda::memcpy_async(&As[j][rowId][threadIdx.x],
&A[aStage + wA * rowId + threadIdx.x], shape1,
pipe);
cuda::memcpy_async(&Bs[j][rowId][threadIdx.x],
&B[bStage + wB * rowId + threadIdx.x], shape1,
pipe);
}
pipe.producer_commit();
}
}
} else {
// this is a whole set of consumer group because threadIdx.y <
// consumer_row_count where consumer_row_count == 16,
// which computes gemm operation on matrices loaded in shared memory by
// producer warp.
const int j = i % maxPipelineStages;
// Synchronize consumer group to make sure the matrices are loaded by
// producer group.
pipe.consumer_wait();
// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
#pragma unroll
for (int k = 0; k < BLOCK_SIZE_X; ++k) {
Csub += As[j][threadIdx.y][k] * Bs[j][k][threadIdx.x];
}
pipe.consumer_release();
}
}
// Write the block sub-matrix to device memory;
// each thread writes four element
if (threadIdx.y < consumer_row_count) {
const int c = wB * BLOCK_SIZE_X * blockIdx.y + BLOCK_SIZE_X * blockIdx.x;
C[c + wB * threadIdx.y + threadIdx.x] = Csub;
}
}
/**
* Matrix multiplication (CUDA Kernel) on the device: C = A * B
* wA is A's width and wB is B's width
*/
template <int BLOCK_SIZE>
__global__ void MatrixMulNaive(float *C, float *A, float *B, int wA, int wB) {
// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * blockIdx.y;
// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * blockIdx.x;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;
// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {
// Load the matrices from device memory
// to shared memory; each thread loads
// one element of each matrix
As[threadIdx.y][threadIdx.x] = A[a + wA * threadIdx.y + threadIdx.x];
Bs[threadIdx.y][threadIdx.x] = B[b + wB * threadIdx.y + threadIdx.x];
// Synchronize to make sure the matrices are loaded
__syncthreads();
// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k) {
Csub += As[threadIdx.y][k] * Bs[k][threadIdx.x];
}
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
}
// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * blockIdx.y + BLOCK_SIZE * blockIdx.x;
C[c + wB * threadIdx.y + threadIdx.x] = Csub;
}
template <int BLOCK_SIZE>
__global__ void MatrixMulNaiveLargeChunk(float *C, float *A, float *B, int wA,
int wB) {
// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ alignas(alignof(float4)) float As[BLOCK_SIZE][BLOCK_SIZE];
// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ alignas(alignof(float4)) float Bs[BLOCK_SIZE][BLOCK_SIZE];
int t4x = threadIdx.x * 4;
// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * blockIdx.y;
// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;
// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * blockIdx.x;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;
// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;
// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix
for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) {
// Load the matrices from device memory
// to shared memory;
// One fourth of the threads load four elements of each matrix
if (t4x < BLOCK_SIZE) {
float4 *const A4s = reinterpret_cast<float4 *>(&As[threadIdx.y][t4x]);
float4 *const B4s = reinterpret_cast<float4 *>(&Bs[threadIdx.y][t4x]);
const float4 *const A4 =
reinterpret_cast<float4 *>(&A[a + wA * threadIdx.y + t4x]);
const float4 *const B4 =
reinterpret_cast<float4 *>(&B[a + wA * threadIdx.y + t4x]);
*A4s = *A4;
*B4s = *B4;
}
// Synchronize to make sure the matrices are loaded
__syncthreads();
// Multiply the two matrices together;
// each thread computes one element
// of the block sub-matrix
#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k) {
Csub += As[threadIdx.y][k] * Bs[k][threadIdx.x];
}
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
}
// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * blockIdx.y + BLOCK_SIZE * blockIdx.x;
C[c + wB * threadIdx.y + threadIdx.x] = Csub;
}
void ConstantInit(float *data, int size, float val) {
for (int i = 0; i < size; ++i) {
data[i] = val;
}
}
/**
* Run matrix multiplication using CUDA
*/
int MatrixMultiply(int argc, char **argv, const dim3 &dimsA, const dim3 &dimsB,
kernels kernel_number) {
// Allocate host memory for matrices A and B
unsigned int size_A = dimsA.x * dimsA.y;
unsigned int mem_size_A = sizeof(float) * size_A;
float *h_A;
checkCudaErrors(cudaMallocHost(&h_A, mem_size_A));
unsigned int size_B = dimsB.x * dimsB.y;
unsigned int mem_size_B = sizeof(float) * size_B;
float *h_B;
checkCudaErrors(cudaMallocHost(&h_B, mem_size_B));
cudaStream_t stream;
// Initialize host memory
const float valB = 2.10f;
ConstantInit(h_A, size_A, 1.0f);
ConstantInit(h_B, size_B, valB);
// Allocate device memory
float *d_A, *d_B, *d_C;
// Allocate host matrix C
dim3 dimsC(dimsB.x, dimsA.y, 1);
unsigned int mem_size_C = dimsC.x * dimsC.y * sizeof(float);
float *h_C;
checkCudaErrors(cudaMallocHost(&h_C, mem_size_C));
if (h_C == NULL) {
fprintf(stderr, "Failed to allocate host matrix C!\n");
exit(EXIT_FAILURE);
}
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&d_A), mem_size_A));
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&d_B), mem_size_B));
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&d_C), mem_size_C));
// Allocate CUDA events that we'll use for timing
cudaEvent_t start, stop;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
// copy host memory to device
checkCudaErrors(
cudaMemcpyAsync(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice, stream));
checkCudaErrors(
cudaMemcpyAsync(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice, stream));
checkCudaErrors(cudaMemsetAsync(d_C, 0, mem_size_C, stream));
// Setup execution parameters
dim3 threads(blockSize, blockSize);
dim3 grid(dimsB.x / threads.x, dimsA.y / threads.y);
// Here the block size is 16x18, where first 16 rows are consumer thread group
// and last 2 rows (1 warp) is producer thread group
dim3 threadsSharedStateKernel(blockSize, blockSize + 2, 1);
dim3 gridSharedStateKernel(dimsB.x / threadsSharedStateKernel.x,
dimsA.y / threadsSharedStateKernel.x);
printf("Running kernel = %d - %s\n", kernel_number,
kernelNames[kernel_number]);
// Create and start timer
printf("Computing result using CUDA Kernel...\n");
// Performs warmup operation using matrixMul CUDA kernel
switch (kernel_number) {
case AsyncCopyMultiStageLargeChunk:
default:
MatrixMulAsyncCopyMultiStageLargeChunk<
blockSize><<<grid, threads, 0, stream>>>(d_C, d_A, d_B, dimsA.x,
dimsB.x);
break;
case AsyncCopyLargeChunk:
MatrixMulAsyncCopyLargeChunk<blockSize><<<grid, threads, 0, stream>>>(
d_C, d_A, d_B, dimsA.x, dimsB.x);
break;
case AsyncCopyLargeChunkAWBarrier:
MatrixMulAsyncCopyLargeChunkAWBarrier<
blockSize><<<grid, threads, 0, stream>>>(d_C, d_A, d_B, dimsA.x,
dimsB.x);
break;
case AsyncCopyMultiStageSharedState:
MatrixMulAsyncCopyMultiStageSharedState<blockSize><<<
gridSharedStateKernel, threadsSharedStateKernel, 0, stream>>>(
d_C, d_A, d_B, dimsA.x, dimsB.x);
break;
case AsyncCopyMultiStage:
MatrixMulAsyncCopyMultiStage<blockSize><<<grid, threads, 0, stream>>>(
d_C, d_A, d_B, dimsA.x, dimsB.x);
break;
case AsyncCopySingleStage:
MatrixMulAsyncCopySingleStage<blockSize><<<grid, threads, 0, stream>>>(
d_C, d_A, d_B, dimsA.x, dimsB.x);
break;
case Naive:
MatrixMulNaive<blockSize><<<grid, threads, 0, stream>>>(d_C, d_A, d_B,
dimsA.x, dimsB.x);
break;
case NaiveLargeChunk:
MatrixMulNaiveLargeChunk<blockSize><<<grid, threads, 0, stream>>>(
d_C, d_A, d_B, dimsA.x, dimsB.x);
break;
}
printf("done\n");
checkCudaErrors(cudaStreamSynchronize(stream));
// Execute the kernel
int nIter = 100;
// Record the start event
checkCudaErrors(cudaEventRecord(start, stream));
for (int j = 0; j < nIter; j++) {
switch (kernel_number) {
case AsyncCopyMultiStageLargeChunk:
default:
MatrixMulAsyncCopyMultiStageLargeChunk<
blockSize><<<grid, threads, 0, stream>>>(d_C, d_A, d_B, dimsA.x,
dimsB.x);
break;
case AsyncCopyLargeChunk:
MatrixMulAsyncCopyLargeChunk<blockSize><<<grid, threads, 0, stream>>>(
d_C, d_A, d_B, dimsA.x, dimsB.x);
break;
case AsyncCopyLargeChunkAWBarrier:
MatrixMulAsyncCopyLargeChunkAWBarrier<
blockSize><<<grid, threads, 0, stream>>>(d_C, d_A, d_B, dimsA.x,
dimsB.x);
break;
case AsyncCopyMultiStageSharedState:
MatrixMulAsyncCopyMultiStageSharedState<blockSize><<<
gridSharedStateKernel, threadsSharedStateKernel, 0, stream>>>(
d_C, d_A, d_B, dimsA.x, dimsB.x);
break;
case AsyncCopyMultiStage:
MatrixMulAsyncCopyMultiStage<blockSize><<<grid, threads, 0, stream>>>(
d_C, d_A, d_B, dimsA.x, dimsB.x);
break;
case AsyncCopySingleStage:
MatrixMulAsyncCopySingleStage<blockSize><<<grid, threads, 0, stream>>>(
d_C, d_A, d_B, dimsA.x, dimsB.x);
break;
case Naive:
MatrixMulNaive<blockSize><<<grid, threads, 0, stream>>>(
d_C, d_A, d_B, dimsA.x, dimsB.x);
break;
case NaiveLargeChunk:
MatrixMulNaiveLargeChunk<blockSize><<<grid, threads, 0, stream>>>(
d_C, d_A, d_B, dimsA.x, dimsB.x);
break;
}
}
// Record the stop event
checkCudaErrors(cudaEventRecord(stop, stream));
// Wait for the stop event to complete
checkCudaErrors(cudaEventSynchronize(stop));
float msecTotal = 0.0f;
checkCudaErrors(cudaEventElapsedTime(&msecTotal, start, stop));
// Compute and print the performance
float msecPerMatrixMul = msecTotal / nIter;
double flopsPerMatrixMul = 2.0 * static_cast<double>(dimsA.x) *
static_cast<double>(dimsA.y) *
static_cast<double>(dimsB.x);
double gigaFlops =
(flopsPerMatrixMul * 1.0e-9f) / (msecPerMatrixMul / 1000.0f);
printf(
"Performance= %.2f GFlop/s, Time= %.3f msec, Size= %.0f Ops,"
" WorkgroupSize= %u threads/block\n",
gigaFlops, msecPerMatrixMul, flopsPerMatrixMul, threads.x * threads.y);
// Copy result from device to host
checkCudaErrors(
cudaMemcpyAsync(h_C, d_C, mem_size_C, cudaMemcpyDeviceToHost, stream));
checkCudaErrors(cudaStreamSynchronize(stream));
printf("Checking computed result for correctness: ");
bool correct = true;
// test relative error by the formula
// |<x, y>_cpu - <x,y>_gpu|/<|x|, |y|> < eps
double eps = 1.e-6; // machine zero
for (int i = 0; i < static_cast<int>(dimsC.x * dimsC.y); i++) {
double abs_err = fabs(h_C[i] - (dimsA.x * valB));
double dot_length = dimsA.x;
double abs_val = fabs(h_C[i]);
double rel_err = abs_err / abs_val / dot_length;
if (rel_err > eps) {
printf("Error! Matrix[%05d]=%.8f, ref=%.8f error term is > %E\n", i,
h_C[i], dimsA.x * valB, eps);
correct = false;
}
}
printf("%s\n", correct ? "Result = PASS" : "Result = FAIL");
// Clean up memory
checkCudaErrors(cudaFreeHost(h_A));
checkCudaErrors(cudaFreeHost(h_B));
checkCudaErrors(cudaFreeHost(h_C));
checkCudaErrors(cudaFree(d_A));
checkCudaErrors(cudaFree(d_B));
checkCudaErrors(cudaFree(d_C));
checkCudaErrors(cudaEventDestroy(start));
checkCudaErrors(cudaEventDestroy(stop));
printf(
"\nNOTE: The CUDA Samples are not meant for performance "
"measurements. Results may vary when GPU Boost is enabled.\n");
if (correct) {
return EXIT_SUCCESS;
} else {
return EXIT_FAILURE;
}
}
int main(int argc, char **argv) {
printf("[globalToShmemAsyncCopy] - Starting...\n");
if (checkCmdLineFlag(argc, (const char **)argv, "help") ||
checkCmdLineFlag(argc, (const char **)argv, "?")) {
printf("Usage -device=n (n >= 0 for deviceID)\n");
printf(" -wA=WidthA -hA=HeightA (Width x Height of Matrix A)\n");
printf(" -wB=WidthB -hB=HeightB (Width x Height of Matrix B)\n");
printf(
" -kernel=kernel_number (0 - AsyncCopyMultiStageLargeChunk; 1 - "
"AsyncCopyLargeChunk)\n");
printf(
" (2 - AsyncCopyLargeChunkAWBarrier; 3 - "
"AsyncCopyMultiStageSharedState)\n");
printf(
" (4 - AsyncCopyMultiStage; 5 - "
"AsyncCopySingleStage; 6 - Naive without memcpy_async)\n");
printf(
" (7 - NaiveLargeChunk without "
"memcpy_async)\n");
printf(
" Note: Outer matrix dimensions of A & B matrices must be equal.\n");
exit(EXIT_SUCCESS);
}
// This will pick the best possible CUDA capable device, otherwise
// override the device ID based on input provided at the command line
int dev = findCudaDevice(argc, (const char **)argv);
int matrixBlock = 32;
dim3 dimsA(10 * 4 * matrixBlock, 10 * 4 * matrixBlock, 1);
dim3 dimsB(10 * 4 * matrixBlock, 10 * 4 * matrixBlock, 1);
// width of Matrix A
if (checkCmdLineFlag(argc, (const char **)argv, "wA")) {
dimsA.x = getCmdLineArgumentInt(argc, (const char **)argv, "wA");
}
// height of Matrix A
if (checkCmdLineFlag(argc, (const char **)argv, "hA")) {
dimsA.y = getCmdLineArgumentInt(argc, (const char **)argv, "hA");
}
// width of Matrix B
if (checkCmdLineFlag(argc, (const char **)argv, "wB")) {
dimsB.x = getCmdLineArgumentInt(argc, (const char **)argv, "wB");
}
// height of Matrix B
if (checkCmdLineFlag(argc, (const char **)argv, "hB")) {
dimsB.y = getCmdLineArgumentInt(argc, (const char **)argv, "hB");
}
if (dimsA.x != dimsB.y) {
printf("Error: outer matrix dimensions must be equal. (%d != %d)\n",
dimsA.x, dimsB.y);
exit(EXIT_FAILURE);
}
kernels selected_kernel = AsyncCopyMultiStageLargeChunk;
// kernel to run - default (AsyncCopyMultiStageLargeChunk == 0)
if (checkCmdLineFlag(argc, (const char **)argv, "kernel")) {
int kernel_number =
getCmdLineArgumentInt(argc, (const char **)argv, "kernel");
if (kernel_number < 8) {
selected_kernel = (kernels)kernel_number;
} else {
printf(
"Error: kernel number should be between 0 to 6, you have entered "
"%d\n",
kernel_number);
exit(EXIT_FAILURE);
}
}
int major = 0;
checkCudaErrors(
cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, dev));
if (major < 7) {
printf("globalToShmemAsyncCopy requires SM 7.0 or higher. Exiting...\n");
exit(EXIT_WAIVED);
}
printf("MatrixA(%d,%d), MatrixB(%d,%d)\n", dimsA.x, dimsA.y, dimsB.x,
dimsB.y);
int matrix_result = MatrixMultiply(argc, argv, dimsA, dimsB, selected_kernel);
exit(matrix_result);
}
|