1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/* Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file demonstrates the usage of conditional graph nodes with
* a series of *simple* example graphs.
*
* For more information on conditional nodes, see the programming guide:
*
* https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#conditional-graph-nodes
*
*/
// System includes
#include <cassert>
#include <cstdio>
// CUDA runtime
#include <cuda_runtime.h>
// helper functions and utilities to work with CUDA
#include <helper_cuda.h>
#include <helper_functions.h>
/*
* Create a graph containing two nodes.
* The first node, A, is a kernel and the second node, B, is a conditional IF node.
* The kernel sets the condition variable to true if a device memory location
* contains an odd number. Otherwise the condition variable is set to false.
* There is a single kernel, C, within the conditional body which prints a message.
*
* A -> B [ C ]
*
*/
__global__ void ifGraphKernelA(char *dPtr, cudaGraphConditionalHandle handle)
{
// In this example, condition is set if *dPtr is odd
unsigned int value = *dPtr & 0x01;
cudaGraphSetConditional(handle, value);
printf("GPU: Handle set to %d\n", value);
}
// This kernel will only be executed if the condition is true
__global__ void ifGraphKernelC(void)
{
printf("GPU: Hello from the GPU!\n");
}
// Setup and launch the graph
void simpleIfGraph(void)
{
cudaGraph_t graph;
cudaGraphExec_t graphExec;
cudaGraphNode_t node;
void *kernelArgs[2];
// Allocate a byte of device memory to use as input
char *dPtr;
checkCudaErrors(cudaMalloc((void**)&dPtr, 1));
printf("simpleIfGraph: Building graph...\n");
cudaGraphCreate(&graph, 0);
// Create conditional handle.
cudaGraphConditionalHandle handle;
cudaGraphConditionalHandleCreate(&handle, graph);
// Use a kernel upstream of the conditional to set the handle value
cudaGraphNodeParams params = { cudaGraphNodeTypeKernel };
params.kernel.func = (void *)ifGraphKernelA;
params.kernel.gridDim.x = params.kernel.gridDim.y = params.kernel.gridDim.z = 1;
params.kernel.blockDim.x = params.kernel.blockDim.y = params.kernel.blockDim.z = 1;
params.kernel.kernelParams = kernelArgs;
kernelArgs[0] = &dPtr;
kernelArgs[1] = &handle;
checkCudaErrors(cudaGraphAddNode(&node, graph, NULL, 0, ¶ms));
cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
cParams.conditional.handle = handle;
cParams.conditional.type = cudaGraphCondTypeIf;
cParams.conditional.size = 1;
checkCudaErrors(cudaGraphAddNode(&node, graph, &node, 1, &cParams));
cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];
// Populate the body of the conditional node
cudaGraphNode_t bodyNode;
params.kernel.func = (void *)ifGraphKernelC;
params.kernel.kernelParams = nullptr;
checkCudaErrors(cudaGraphAddNode(&bodyNode, bodyGraph, NULL, 0, ¶ms));
checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
// Initialize device memory and launch the graph
checkCudaErrors(cudaMemset(dPtr, 0, 1)); // Set dPtr to 0
printf("Host: Launching graph with conditional value set to false\n");
checkCudaErrors(cudaGraphLaunch(graphExec, 0));
checkCudaErrors(cudaDeviceSynchronize());
// Initialize device memory and launch the graph
checkCudaErrors(cudaMemset(dPtr, 1, 1)); // Set dPtr to 1
printf("Host: Launching graph with conditional value set to true\n");
checkCudaErrors(cudaGraphLaunch(graphExec, 0));
checkCudaErrors(cudaDeviceSynchronize());
// Cleanup
checkCudaErrors(cudaGraphExecDestroy(graphExec));
checkCudaErrors(cudaGraphDestroy(graph));
checkCudaErrors(cudaFree(dPtr));
printf("simpleIfGraph: Complete\n\n");
}
/*
* Create a graph containing a single conditional while node.
* The default value of the conditional variable is set to true, so this
* effectively becomes a do-while loop as the conditional body will always
* execute at least once. The body of the conditional contains 3 kernel nodes:
* A [ B -> C -> D ]
* Nodes B and C are just dummy nodes for demonstrative purposes. Node D
* will decrement a device memory location and set the condition value to false
* when the value reaches zero, terminating the loop.
* In this example, stream capture is used to populate the conditional body.
*/
// This kernel will only be executed if the condition is true
__global__ void doWhileEmptyKernel(void)
{
printf("GPU: doWhileEmptyKernel()\n");
return;
}
__global__ void doWhileLoopKernel(char *dPtr, cudaGraphConditionalHandle handle)
{
if (--(*dPtr) == 0) {
cudaGraphSetConditional(handle, 0);
}
printf("GPU: counter = %d\n", *dPtr);
}
void simpleDoWhileGraph(void)
{
cudaGraph_t graph;
cudaGraphExec_t graphExec;
cudaGraphNode_t node;
// Allocate a byte of device memory to use as input
char *dPtr;
checkCudaErrors(cudaMalloc((void**)&dPtr, 1));
printf("simpleDoWhileGraph: Building graph...\n");
checkCudaErrors(cudaGraphCreate(&graph, 0));
cudaGraphConditionalHandle handle;
checkCudaErrors(cudaGraphConditionalHandleCreate(&handle, graph, 1, cudaGraphCondAssignDefault));
cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
cParams.conditional.handle = handle;
cParams.conditional.type = cudaGraphCondTypeWhile;
cParams.conditional.size = 1;
checkCudaErrors(cudaGraphAddNode(&node, graph, NULL, 0, &cParams));
cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];
cudaStream_t captureStream;
checkCudaErrors(cudaStreamCreate(&captureStream));
checkCudaErrors(cudaStreamBeginCaptureToGraph(captureStream, bodyGraph, nullptr, nullptr, 0, cudaStreamCaptureModeRelaxed));
doWhileEmptyKernel<<<1, 1, 0, captureStream>>>();
doWhileEmptyKernel<<<1, 1, 0, captureStream>>>();
doWhileLoopKernel<<<1, 1, 0, captureStream>>>(dPtr, handle);
checkCudaErrors(cudaStreamEndCapture(captureStream, nullptr));
checkCudaErrors(cudaStreamDestroy(captureStream));
checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
// Initialize device memory and launch the graph
checkCudaErrors(cudaMemset(dPtr, 10, 1)); // Set dPtr to 10
printf("Host: Launching graph with loop counter set to 10\n");
checkCudaErrors(cudaGraphLaunch(graphExec, 0));
checkCudaErrors(cudaDeviceSynchronize());
// Cleanup
checkCudaErrors(cudaGraphExecDestroy(graphExec));
checkCudaErrors(cudaGraphDestroy(graph));
checkCudaErrors(cudaFree(dPtr));
printf("simpleDoWhileGraph: Complete\n\n");
}
/*
* Create a graph containing a conditional while loop using stream capture.
* This demonstrates how to insert a conditional node into a stream which is
* being captured. The graph consists of a kernel node followed by a conditional
* while node which contains a single kernel node:
*
* A -> B [ C ]
*
* The same kernel will be used for both nodes A and C. This kernel will test
* a device memory location and set the condition when the location is non-zero.
* We must run the kernel before the loop as well as inside the loop in order
* to behave like a while loop. We need to evaluate the device memory location
* before the conditional node is evaluated in order to set the condition variable
* properly. Because we're using a kernel upstream of the conditional node,
* there is no need to use the handle default value to initialize the conditional
* value.
*/
__global__ void capturedWhileKernel(char *dPtr, cudaGraphConditionalHandle handle)
{
printf("GPU: counter = %d\n", *dPtr);
if (*dPtr) {
(*dPtr)--;
}
cudaGraphSetConditional(handle, *dPtr);
}
__global__ void capturedWhileEmptyKernel(void)
{
printf("GPU: capturedWhileEmptyKernel()\n");
return;
}
void capturedWhileGraph(void)
{
cudaGraph_t graph;
cudaGraphExec_t graphExec;
cudaStreamCaptureStatus status;
const cudaGraphNode_t *dependencies;
size_t numDependencies;
// Allocate a byte of device memory to use as input
char *dPtr;
checkCudaErrors(cudaMalloc((void**)&dPtr, 1));
printf("capturedWhileGraph: Building graph...\n");
cudaStream_t captureStream;
checkCudaErrors(cudaStreamCreate(&captureStream));
checkCudaErrors(cudaStreamBeginCapture(captureStream, cudaStreamCaptureModeRelaxed));
// Obtain the handle of the graph
checkCudaErrors(cudaStreamGetCaptureInfo(captureStream, &status, NULL, &graph, &dependencies, &numDependencies));
// Create the conditional handle
cudaGraphConditionalHandle handle;
checkCudaErrors(cudaGraphConditionalHandleCreate(&handle, graph));
// Insert kernel node A
capturedWhileKernel<<<1, 1, 0, captureStream>>>(dPtr, handle);
// Obtain the handle for node A
checkCudaErrors(cudaStreamGetCaptureInfo(captureStream, &status, NULL, &graph, &dependencies, &numDependencies));
// Insert conditional node B
cudaGraphNode_t node;
cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
cParams.conditional.handle = handle;
cParams.conditional.type = cudaGraphCondTypeWhile;
cParams.conditional.size = 1;
checkCudaErrors(cudaGraphAddNode(&node, graph, dependencies, numDependencies, &cParams));
cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];
// Update stream capture dependencies to account for the node we manually added
checkCudaErrors(cudaStreamUpdateCaptureDependencies(captureStream, &node, 1, cudaStreamSetCaptureDependencies));
// Insert kernel node D
capturedWhileEmptyKernel<<<1, 1, 0, captureStream>>>();
checkCudaErrors(cudaStreamEndCapture(captureStream, &graph));
checkCudaErrors(cudaStreamDestroy(captureStream));
// Populate conditional body graph using stream capture
cudaStream_t bodyStream;
checkCudaErrors(cudaStreamCreate(&bodyStream));
checkCudaErrors(cudaStreamBeginCaptureToGraph(bodyStream, bodyGraph, nullptr, nullptr, 0, cudaStreamCaptureModeRelaxed));
// Insert kernel node C
capturedWhileKernel<<<1, 1, 0, bodyStream>>>(dPtr, handle);
checkCudaErrors(cudaStreamEndCapture(bodyStream, nullptr));
checkCudaErrors(cudaStreamDestroy(bodyStream));
checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
// Initialize device memory and launch the graph
// Device memory is zero, so the conditional node will not execute
checkCudaErrors(cudaMemset(dPtr, 0, 1)); // Set dPtr to 0
printf("Host: Launching graph with loop counter set to 0\n");
checkCudaErrors(cudaGraphLaunch(graphExec, 0));
checkCudaErrors(cudaDeviceSynchronize());
// Initialize device memory and launch the graph
checkCudaErrors(cudaMemset(dPtr, 10, 1)); // Set dPtr to 10
printf("Host: Launching graph with loop counter set to 10\n");
checkCudaErrors(cudaGraphLaunch(graphExec, 0));
checkCudaErrors(cudaDeviceSynchronize());
// Cleanup
checkCudaErrors(cudaGraphExecDestroy(graphExec));
checkCudaErrors(cudaGraphDestroy(graph));
checkCudaErrors(cudaFree(dPtr));
printf("capturedWhileGraph: Complete\n\n");
}
int main(int argc, char **argv) {
int device = findCudaDevice(argc, (const char **)argv);
int driverVersion = 0;
cudaDriverGetVersion(&driverVersion);
printf("Driver version is: %d.%d\n", driverVersion / 1000,
(driverVersion % 100) / 10);
if (driverVersion < 12030) {
printf("Waiving execution as driver does not support Graph Conditional Nodes\n");
exit(EXIT_WAIVED);
}
simpleIfGraph();
simpleDoWhileGraph();
capturedWhileGraph();
return 0;
}
|