1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// System includes
#include <assert.h>
#include <stdio.h>
// helper functions and utilities to work with CUDA
#include <helper_cuda.h>
#include <helper_functions.h>
#define NUM_GRAPHS 8
#define THREADS_PER_BLOCK 512
void printMemoryFootprint(int device) {
size_t footprint;
checkCudaErrors(cudaDeviceGetGraphMemAttribute(
device, (cudaGraphMemAttributeType)0, &footprint));
printf(" FOOTPRINT: %lu bytes\n", footprint);
}
void prepareAllocParams(cudaMemAllocNodeParams *allocParams, size_t bytes,
int device) {
memset(allocParams, 0, sizeof(*allocParams));
allocParams->bytesize = bytes;
allocParams->poolProps.allocType = cudaMemAllocationTypePinned;
allocParams->poolProps.location.id = device;
allocParams->poolProps.location.type = cudaMemLocationTypeDevice;
}
void createVirtAddrReuseGraph(cudaGraphExec_t *graphExec, size_t bytes,
int device) {
cudaGraph_t graph;
cudaGraphNode_t allocNodeA, allocNodeB, freeNodeA, freeNodeB;
cudaMemAllocNodeParams allocParams;
float *d_a, *d_b;
checkCudaErrors(cudaGraphCreate(&graph, 0));
prepareAllocParams(&allocParams, bytes, device);
checkCudaErrors(
cudaGraphAddMemAllocNode(&allocNodeA, graph, NULL, 0, &allocParams));
d_a = (float *)allocParams.dptr;
checkCudaErrors(
cudaGraphAddMemFreeNode(&freeNodeA, graph, &allocNodeA, 1, (void *)d_a));
// The dependency between the allocation of d_b and the free of d_a allows d_b
// to reuse the same VA.
checkCudaErrors(cudaGraphAddMemAllocNode(&allocNodeB, graph, &freeNodeA, 1,
&allocParams));
d_b = (float *)allocParams.dptr;
if (d_a == d_b) {
printf("Check confirms that d_a and d_b share a virtual address.\n");
} else {
printf("Check shows that d_a and d_b DO NOT share a virtual address.\n");
}
checkCudaErrors(
cudaGraphAddMemFreeNode(&freeNodeB, graph, &allocNodeB, 1, (void *)d_b));
checkCudaErrors(cudaGraphInstantiate(graphExec, graph, NULL, NULL, 0));
checkCudaErrors(cudaGraphDestroy(graph));
}
void virtualAddressReuseSingleGraph(size_t bytes, int device) {
cudaStream_t stream;
cudaGraphExec_t graphExec;
printf("================================\n");
printf("Running virtual address reuse example.\n");
printf(
"Sequential allocations & frees within a single graph enable CUDA to "
"reuse virtual addresses.\n\n");
createVirtAddrReuseGraph(&graphExec, bytes, device);
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
checkCudaErrors(cudaGraphLaunch(graphExec, stream));
checkCudaErrors(cudaStreamSynchronize(stream));
printMemoryFootprint(device);
checkCudaErrors(cudaGraphExecDestroy(graphExec));
checkCudaErrors(cudaStreamDestroy(stream));
}
// This is a kernel that does no real work but runs at least for a specified
// number of clocks
__global__ void clockBlock(clock_t clock_count) {
unsigned int start_clock = (unsigned int)clock();
clock_t clock_offset = 0;
while (clock_offset < clock_count) {
unsigned int end_clock = (unsigned int)clock();
// The code below should work like
// this (thanks to modular arithmetics):
//
// clock_offset = (clock_t) (end_clock > start_clock ?
// end_clock - start_clock :
// end_clock + (0xffffffffu - start_clock));
//
// Indeed, let m = 2^32 then
// end - start = end + m - start (mod m).
clock_offset = (clock_t)(end_clock - start_clock);
}
}
// A pointer to the allocated device buffer is returned in dPtr so the caller
// can compare virtual addresses. The kernel node is added to increase the
// graph's runtime.
void createSimpleAllocFreeGraph(cudaGraphExec_t *graphExec, float **dPtr,
size_t bytes, int device) {
cudaGraph_t graph;
cudaGraphNode_t allocNodeA, freeNodeA, blockDeviceNode;
cudaMemAllocNodeParams allocParams;
cudaKernelNodeParams blockDeviceNodeParams = {0};
int numElements = bytes / sizeof(float);
float kernelTime = 5; // time for each thread to run in microseconds
checkCudaErrors(cudaGraphCreate(&graph, 0));
prepareAllocParams(&allocParams, bytes, device);
checkCudaErrors(
cudaGraphAddMemAllocNode(&allocNodeA, graph, NULL, 0, &allocParams));
*dPtr = (float *)allocParams.dptr;
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, device));
clock_t time_clocks = (clock_t)((kernelTime / 1000.0) * deviceProp.clockRate);
void *blockDeviceArgs[1] = {(void *)&time_clocks};
size_t numBlocks = numElements / (size_t)THREADS_PER_BLOCK;
blockDeviceNodeParams.gridDim = dim3(numBlocks, 1, 1);
blockDeviceNodeParams.blockDim = dim3(THREADS_PER_BLOCK, 1, 1);
blockDeviceNodeParams.sharedMemBytes = 0;
blockDeviceNodeParams.extra = NULL;
blockDeviceNodeParams.func = (void *)clockBlock;
blockDeviceNodeParams.kernelParams = (void **)blockDeviceArgs;
checkCudaErrors(cudaGraphAddKernelNode(&blockDeviceNode, graph, &allocNodeA,
1, &blockDeviceNodeParams));
checkCudaErrors(cudaGraphAddMemFreeNode(&freeNodeA, graph, &blockDeviceNode,
1, (void *)*dPtr));
checkCudaErrors(cudaGraphInstantiate(graphExec, graph, NULL, NULL, 0));
checkCudaErrors(cudaGraphDestroy(graph));
}
void physicalMemoryReuseSingleStream(size_t bytes, int device) {
cudaStream_t stream;
cudaGraphExec_t graphExecs[NUM_GRAPHS];
float *dPtrs[NUM_GRAPHS];
bool virtualAddrDiffer = true;
printf("================================\n");
printf("Running physical memory reuse example.\n");
printf(
"CUDA reuses the same physical memory for allocations from separate "
"graphs when the allocation lifetimes don't overlap.\n\n");
for (int i = 0; i < NUM_GRAPHS; i++) {
createSimpleAllocFreeGraph(&graphExecs[i], &dPtrs[i], bytes, device);
}
printf("Creating the graph execs does not reserve any physical memory.\n");
printMemoryFootprint(device);
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
checkCudaErrors(cudaGraphLaunch(graphExecs[0], stream));
printf("\nThe first graph launched reserves the memory it needs.\n");
printMemoryFootprint(device);
checkCudaErrors(cudaGraphLaunch(graphExecs[0], stream));
printf(
"A subsequent launch of the same graph in the same stream reuses the "
"same physical memory. ");
printf("Thus the memory footprint does not grow here.\n");
printMemoryFootprint(device);
printf(
"\nSubsequent launches of other graphs in the same stream also reuse the "
"physical memory. ");
printf("Thus the memory footprint does not grow here.\n");
for (int i = 1; i < NUM_GRAPHS; i++) {
checkCudaErrors(cudaGraphLaunch(graphExecs[i], stream));
printf("%02d: ", i);
printMemoryFootprint(device);
}
checkCudaErrors(cudaStreamSynchronize(stream));
for (int i = 0; i < NUM_GRAPHS; i++) {
for (int j = i + 1; j < NUM_GRAPHS; j++) {
if (dPtrs[i] == dPtrs[j]) {
virtualAddrDiffer = false;
printf("Error: Graph exec %d and %d have the same virtual address!\n",
i - 1, i);
}
}
checkCudaErrors(cudaGraphExecDestroy(graphExecs[i]));
}
if (virtualAddrDiffer) {
printf("\nCheck confirms all graphs use a different virtual address.\n");
} else {
printf(
"\nAll graphs do NOT use different virtual addresses. Exiting test.\n");
exit(EXIT_FAILURE);
}
checkCudaErrors(cudaStreamDestroy(stream));
}
void simultaneousStreams(size_t bytes, int device) {
cudaStream_t streams[NUM_GRAPHS];
cudaGraphExec_t graphExecs[NUM_GRAPHS];
float *dPtrs[NUM_GRAPHS];
printf("================================\n");
printf("Running simultaneous streams example.\n");
printf("Graphs that can run concurrently need separate physical memory. ");
printf(
"In this example, each graph launched in a separate stream increases the "
"total memory footprint.\n\n");
printf(
"When launching a new graph, CUDA may reuse physical memory from a graph "
"whose execution has already ");
printf(
"finished -- even if the new graph is being launched in a different "
"stream from the completed graph. ");
printf(
"Therefore, a kernel node is added to the graphs to increase "
"runtime.\n\n");
for (int i = 0; i < NUM_GRAPHS; i++) {
createSimpleAllocFreeGraph(&graphExecs[i], &dPtrs[i], bytes, device);
checkCudaErrors(
cudaStreamCreateWithFlags(&streams[i], cudaStreamNonBlocking));
}
printf("Initial footprint:\n");
printMemoryFootprint(device);
printf(
"\nEach graph launch in a seperate stream grows the memory footprint:\n");
for (int i = 1; i < NUM_GRAPHS; i++) {
checkCudaErrors(cudaGraphLaunch(graphExecs[i], streams[i]));
printf("%02d: ", i);
printMemoryFootprint(device);
}
for (int i = 0; i < NUM_GRAPHS; i++) {
checkCudaErrors(cudaStreamSynchronize(streams[i]));
checkCudaErrors(cudaGraphExecDestroy(graphExecs[i]));
checkCudaErrors(cudaStreamDestroy(streams[i]));
}
}
void createSimpleAllocNoFreeGraph(cudaGraphExec_t *graphExec, float **dPtr,
size_t bytes, int device) {
cudaGraph_t graph;
cudaGraphNode_t allocNodeA;
cudaMemAllocNodeParams allocParams;
checkCudaErrors(cudaGraphCreate(&graph, 0));
prepareAllocParams(&allocParams, bytes, device);
checkCudaErrors(
cudaGraphAddMemAllocNode(&allocNodeA, graph, NULL, 0, &allocParams));
*dPtr = (float *)allocParams.dptr;
checkCudaErrors(cudaGraphInstantiate(graphExec, graph, NULL, NULL, 0));
checkCudaErrors(cudaGraphDestroy(graph));
}
void unfreedAllocations(size_t bytes, int device) {
cudaStream_t stream;
cudaGraphExec_t graphExecs[NUM_GRAPHS];
float *dPtrs[NUM_GRAPHS];
printf("================================\n");
printf("Running unfreed streams example.\n");
printf(
"CUDA cannot reuse phyiscal memory from graphs which do not free their "
"allocations.\n\n");
for (int i = 0; i < NUM_GRAPHS; i++) {
createSimpleAllocNoFreeGraph(&graphExecs[i], &dPtrs[i], bytes, device);
}
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
printf(
"Despite being launched in the same stream, each graph launch grows the "
"memory footprint. ");
printf(
"Since the allocation is not freed, CUDA keeps the memory valid for "
"use.\n");
for (int i = 0; i < NUM_GRAPHS; i++) {
checkCudaErrors(cudaGraphLaunch(graphExecs[i], stream));
printf("%02d: ", i);
printMemoryFootprint(device);
}
checkCudaErrors(cudaStreamSynchronize(stream));
checkCudaErrors(cudaDeviceGraphMemTrim(device));
printf(
"\nTrimming does not impact the memory footprint since the un-freed "
"allocations are still holding onto the memory.\n");
printMemoryFootprint(device);
for (int i = 0; i < NUM_GRAPHS; i++) {
checkCudaErrors(cudaFree(dPtrs[i]));
}
printf("\nFreeing the allocations does not shrink the footprint.\n");
printMemoryFootprint(device);
checkCudaErrors(cudaDeviceGraphMemTrim(device));
printf(
"\nSince the allocations are now freed, trimming does reduce the "
"footprint even when the graph execs are not yet destroyed.\n");
printMemoryFootprint(device);
for (int i = 0; i < NUM_GRAPHS; i++) {
checkCudaErrors(cudaGraphExecDestroy(graphExecs[i]));
}
checkCudaErrors(cudaStreamDestroy(stream));
}
void cleanupMemory(int device) {
checkCudaErrors(cudaDeviceGraphMemTrim(device));
printf("\nCleaning up example by trimming device memory.\n");
printMemoryFootprint(device);
printf("\n");
}
int main(int argc, char **argv) {
size_t bytes = 64 * 1024 * 1024;
int device = findCudaDevice(argc, (const char **)argv);
int driverVersion = 0;
int deviceSupportsMemoryPools = 0;
cudaDriverGetVersion(&driverVersion);
printf("Driver version is: %d.%d\n", driverVersion / 1000,
(driverVersion % 100) / 10);
if (driverVersion < 11040) {
printf("Waiving execution as driver does not support Graph Memory Nodes\n");
exit(EXIT_WAIVED);
}
cudaDeviceGetAttribute(&deviceSupportsMemoryPools,
cudaDevAttrMemoryPoolsSupported, device);
if (!deviceSupportsMemoryPools) {
printf("Waiving execution as device does not support Memory Pools\n");
exit(EXIT_WAIVED);
} else {
printf("Running sample.\n");
}
virtualAddressReuseSingleGraph(bytes, device);
cleanupMemory(device);
physicalMemoryReuseSingleStream(bytes, device);
cleanupMemory(device);
simultaneousStreams(bytes, device);
cleanupMemory(device);
unfreedAllocations(bytes, device);
cleanupMemory(device);
printf("================================\n");
printf("Sample complete.\n");
}
|