1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// This sample demonstrates dynamic global memory allocation through device C++
// new and delete operators and virtual function declarations available with
// CUDA 4.0.
#include <stdio.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <helper_cuda.h>
#include <stdlib.h>
#include <vector>
#include <algorithm>
const char *sSDKsample = "newdelete";
#include "container.hpp"
////////////////////////////////////////////////////////////////////////////////
//
// Kernels to allocate and instantiate Container objects on the device heap
//
////////////////////////////////////////////////////////////////////////////////
__global__ void vectorCreate(Container<int> **g_container, int max_size) {
// The Vector object and the data storage are allocated in device heap memory.
// This makes it persistent for the lifetime of the CUDA context.
// The grid has only one thread as only a single object instance is needed.
*g_container = new Vector<int>(max_size);
}
////////////////////////////////////////////////////////////////////////////////
//
// Kernels to fill and consume shared Container objects.
//
////////////////////////////////////////////////////////////////////////////////
__global__ void containerFill(Container<int> **g_container) {
// All threads of the grid cooperatively populate the shared Container object
// with data.
if (threadIdx.x == 0) {
(*g_container)->push(blockIdx.x);
}
}
__global__ void containerConsume(Container<int> **g_container, int *d_result) {
// All threads of the grid cooperatively consume the data from the shared
// Container object.
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int v;
if ((*g_container)->pop(v)) {
d_result[idx] = v;
} else {
d_result[idx] = -1;
}
}
////////////////////////////////////////////////////////////////////////////////
//
// Kernel to delete shared Container objects.
//
////////////////////////////////////////////////////////////////////////////////
__global__ void containerDelete(Container<int> **g_container) {
delete *g_container;
}
////////////////////////////////////////////////////////////////////////////////
//
// Kernels to using of placement new to put shared Vector objects and data in
// shared memory
//
////////////////////////////////////////////////////////////////////////////////
__global__ void placementNew(int *d_result) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ unsigned char __align__(8) s_buffer[sizeof(Vector<int>)];
__shared__ int __align__(8) s_data[1024];
__shared__ Vector<int> *s_vector;
// The first thread of the block initializes the shared Vector object.
// The placement new operator enables the Vector object and the data array top
// be placed in shared memory.
if (threadIdx.x == 0) {
s_vector = new (s_buffer) Vector<int>(1024, s_data);
}
cg::sync(cta);
if ((threadIdx.x & 1) == 0) {
s_vector->push(threadIdx.x >> 1);
}
// Need to sync as the vector implementation does not support concurrent
// push/pop operations.
cg::sync(cta);
int v;
if (s_vector->pop(v)) {
d_result[threadIdx.x] = v;
} else {
d_result[threadIdx.x] = -1;
}
// Note: deleting objects placed in shared memory is not necessary (lifetime
// of shared memory is that of the block)
}
struct ComplexType_t {
int a;
int b;
float c;
float d;
};
__global__ void complexVector(int *d_result) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ unsigned char __align__(8) s_buffer[sizeof(Vector<ComplexType_t>)];
__shared__ ComplexType_t __align__(8) s_data[1024];
__shared__ Vector<ComplexType_t> *s_vector;
// The first thread of the block initializes the shared Vector object.
// The placement new operator enables the Vector object and the data array top
// be placed in shared memory.
if (threadIdx.x == 0) {
s_vector = new (s_buffer) Vector<ComplexType_t>(1024, s_data);
}
cg::sync(cta);
if ((threadIdx.x & 1) == 0) {
ComplexType_t data;
data.a = threadIdx.x >> 1;
data.b = blockIdx.x;
data.c = threadIdx.x / (float)(blockDim.x);
data.d = blockIdx.x / (float)(gridDim.x);
s_vector->push(data);
}
cg::sync(cta);
ComplexType_t v;
if (s_vector->pop(v)) {
d_result[threadIdx.x] = v.a;
} else {
d_result[threadIdx.x] = -1;
}
// Note: deleting objects placed in shared memory is not necessary (lifetime
// of shared memory is that of the block)
}
////////////////////////////////////////////////////////////////////////////////
//
// Host code
//
////////////////////////////////////////////////////////////////////////////////
bool checkResult(int *d_result, int N) {
std::vector<int> h_result;
h_result.resize(N);
checkCudaErrors(cudaMemcpy(&h_result[0], d_result, N * sizeof(int),
cudaMemcpyDeviceToHost));
std::sort(h_result.begin(), h_result.end());
bool success = true;
bool test = false;
int value = 0;
for (int i = 0; i < N; ++i) {
if (h_result[i] != -1) {
test = true;
}
if (test && (value++) != h_result[i]) {
success = false;
}
}
return success;
}
bool testContainer(Container<int> **d_container, int blocks, int threads) {
int *d_result;
cudaMalloc(&d_result, blocks * threads * sizeof(int));
containerFill<<<blocks, threads>>>(d_container);
containerConsume<<<blocks, threads>>>(d_container, d_result);
containerDelete<<<1, 1>>>(d_container);
checkCudaErrors(cudaDeviceSynchronize());
bool success = checkResult(d_result, blocks * threads);
cudaFree(d_result);
return success;
}
bool testPlacementNew(int threads) {
int *d_result;
cudaMalloc(&d_result, threads * sizeof(int));
placementNew<<<1, threads>>>(d_result);
checkCudaErrors(cudaDeviceSynchronize());
bool success = checkResult(d_result, threads);
cudaFree(d_result);
return success;
}
bool testComplexType(int threads) {
int *d_result;
cudaMalloc(&d_result, threads * sizeof(int));
complexVector<<<1, threads>>>(d_result);
checkCudaErrors(cudaDeviceSynchronize());
bool success = checkResult(d_result, threads);
cudaFree(d_result);
return success;
}
////////////////////////////////////////////////////////////////////////////////
//
// MAIN
//
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf("%s Starting...\n\n", sSDKsample);
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
findCudaDevice(argc, (const char **)argv);
// set the heap size for device size new/delete to 128 MB
checkCudaErrors(cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128 * (1 << 20)));
Container<int> **d_container;
checkCudaErrors(cudaMalloc(&d_container, sizeof(Container<int> **)));
bool bTest = false;
int test_passed = 0;
printf(" > Container = Vector test ");
vectorCreate<<<1, 1>>>(d_container, 128 * 128);
bTest = testContainer(d_container, 128, 128);
printf(bTest ? "OK\n\n" : "NOT OK\n\n");
test_passed += (bTest ? 1 : 0);
checkCudaErrors(cudaFree(d_container));
printf(" > Container = Vector, using placement new on SMEM buffer test ");
bTest = testPlacementNew(1024);
printf(bTest ? "OK\n\n" : "NOT OK\n\n");
test_passed += (bTest ? 1 : 0);
printf(" > Container = Vector, with user defined datatype test ");
bTest = testComplexType(1024);
printf(bTest ? "OK\n\n" : "NOT OK\n\n");
test_passed += (bTest ? 1 : 0);
printf("Test Summary: %d/3 succesfully run\n", test_passed);
exit(test_passed == 3 ? EXIT_SUCCESS : EXIT_FAILURE);
}
|