1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cooperative_groups.h>
#include <cuda_runtime.h>
#include <helper_cuda.h>
#include <vector>
namespace cg = cooperative_groups;
#define THREADS_PER_BLOCK 512
#define GRAPH_LAUNCH_ITERATIONS 3
typedef struct callBackData {
const char *fn_name;
double *data;
} callBackData_t;
__global__ void reduce(float *inputVec, double *outputVec, size_t inputSize,
size_t outputSize) {
__shared__ double tmp[THREADS_PER_BLOCK];
cg::thread_block cta = cg::this_thread_block();
size_t globaltid = blockIdx.x * blockDim.x + threadIdx.x;
double temp_sum = 0.0;
for (int i = globaltid; i < inputSize; i += gridDim.x * blockDim.x) {
temp_sum += (double)inputVec[i];
}
tmp[cta.thread_rank()] = temp_sum;
cg::sync(cta);
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
double beta = temp_sum;
double temp;
for (int i = tile32.size() / 2; i > 0; i >>= 1) {
if (tile32.thread_rank() < i) {
temp = tmp[cta.thread_rank() + i];
beta += temp;
tmp[cta.thread_rank()] = beta;
}
cg::sync(tile32);
}
cg::sync(cta);
if (cta.thread_rank() == 0 && blockIdx.x < outputSize) {
beta = 0.0;
for (int i = 0; i < cta.size(); i += tile32.size()) {
beta += tmp[i];
}
outputVec[blockIdx.x] = beta;
}
}
__global__ void reduceFinal(double *inputVec, double *result,
size_t inputSize) {
__shared__ double tmp[THREADS_PER_BLOCK];
cg::thread_block cta = cg::this_thread_block();
size_t globaltid = blockIdx.x * blockDim.x + threadIdx.x;
double temp_sum = 0.0;
for (int i = globaltid; i < inputSize; i += gridDim.x * blockDim.x) {
temp_sum += (double)inputVec[i];
}
tmp[cta.thread_rank()] = temp_sum;
cg::sync(cta);
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
// do reduction in shared mem
if ((blockDim.x >= 512) && (cta.thread_rank() < 256)) {
tmp[cta.thread_rank()] = temp_sum = temp_sum + tmp[cta.thread_rank() + 256];
}
cg::sync(cta);
if ((blockDim.x >= 256) && (cta.thread_rank() < 128)) {
tmp[cta.thread_rank()] = temp_sum = temp_sum + tmp[cta.thread_rank() + 128];
}
cg::sync(cta);
if ((blockDim.x >= 128) && (cta.thread_rank() < 64)) {
tmp[cta.thread_rank()] = temp_sum = temp_sum + tmp[cta.thread_rank() + 64];
}
cg::sync(cta);
if (cta.thread_rank() < 32) {
// Fetch final intermediate sum from 2nd warp
if (blockDim.x >= 64) temp_sum += tmp[cta.thread_rank() + 32];
// Reduce final warp using shuffle
for (int offset = tile32.size() / 2; offset > 0; offset /= 2) {
temp_sum += tile32.shfl_down(temp_sum, offset);
}
}
// write result for this block to global mem
if (cta.thread_rank() == 0) result[0] = temp_sum;
}
void init_input(float *a, size_t size) {
for (size_t i = 0; i < size; i++) a[i] = (rand() & 0xFF) / (float)RAND_MAX;
}
void CUDART_CB myHostNodeCallback(void *data) {
// Check status of GPU after stream operations are done
callBackData_t *tmp = (callBackData_t *)(data);
// checkCudaErrors(tmp->status);
double *result = (double *)(tmp->data);
char *function = (char *)(tmp->fn_name);
printf("[%s] Host callback final reduced sum = %lf\n", function, *result);
*result = 0.0; // reset the result
}
void cudaGraphsManual(float *inputVec_h, float *inputVec_d, double *outputVec_d,
double *result_d, size_t inputSize, size_t numOfBlocks) {
cudaStream_t streamForGraph;
cudaGraph_t graph;
std::vector<cudaGraphNode_t> nodeDependencies;
cudaGraphNode_t memcpyNode, kernelNode, memsetNode;
double result_h = 0.0;
checkCudaErrors(cudaStreamCreate(&streamForGraph));
cudaKernelNodeParams kernelNodeParams = {0};
cudaMemcpy3DParms memcpyParams = {0};
cudaMemsetParams memsetParams = {0};
memcpyParams.srcArray = NULL;
memcpyParams.srcPos = make_cudaPos(0, 0, 0);
memcpyParams.srcPtr =
make_cudaPitchedPtr(inputVec_h, sizeof(float) * inputSize, inputSize, 1);
memcpyParams.dstArray = NULL;
memcpyParams.dstPos = make_cudaPos(0, 0, 0);
memcpyParams.dstPtr =
make_cudaPitchedPtr(inputVec_d, sizeof(float) * inputSize, inputSize, 1);
memcpyParams.extent = make_cudaExtent(sizeof(float) * inputSize, 1, 1);
memcpyParams.kind = cudaMemcpyHostToDevice;
memsetParams.dst = (void *)outputVec_d;
memsetParams.value = 0;
memsetParams.pitch = 0;
memsetParams.elementSize = sizeof(float); // elementSize can be max 4 bytes
memsetParams.width = numOfBlocks * 2;
memsetParams.height = 1;
checkCudaErrors(cudaGraphCreate(&graph, 0));
checkCudaErrors(
cudaGraphAddMemcpyNode(&memcpyNode, graph, NULL, 0, &memcpyParams));
checkCudaErrors(
cudaGraphAddMemsetNode(&memsetNode, graph, NULL, 0, &memsetParams));
nodeDependencies.push_back(memsetNode);
nodeDependencies.push_back(memcpyNode);
void *kernelArgs[4] = {(void *)&inputVec_d, (void *)&outputVec_d, &inputSize,
&numOfBlocks};
kernelNodeParams.func = (void *)reduce;
kernelNodeParams.gridDim = dim3(numOfBlocks, 1, 1);
kernelNodeParams.blockDim = dim3(THREADS_PER_BLOCK, 1, 1);
kernelNodeParams.sharedMemBytes = 0;
kernelNodeParams.kernelParams = (void **)kernelArgs;
kernelNodeParams.extra = NULL;
checkCudaErrors(
cudaGraphAddKernelNode(&kernelNode, graph, nodeDependencies.data(),
nodeDependencies.size(), &kernelNodeParams));
nodeDependencies.clear();
nodeDependencies.push_back(kernelNode);
memset(&memsetParams, 0, sizeof(memsetParams));
memsetParams.dst = result_d;
memsetParams.value = 0;
memsetParams.elementSize = sizeof(float);
memsetParams.width = 2;
memsetParams.height = 1;
checkCudaErrors(
cudaGraphAddMemsetNode(&memsetNode, graph, NULL, 0, &memsetParams));
nodeDependencies.push_back(memsetNode);
memset(&kernelNodeParams, 0, sizeof(kernelNodeParams));
kernelNodeParams.func = (void *)reduceFinal;
kernelNodeParams.gridDim = dim3(1, 1, 1);
kernelNodeParams.blockDim = dim3(THREADS_PER_BLOCK, 1, 1);
kernelNodeParams.sharedMemBytes = 0;
void *kernelArgs2[3] = {(void *)&outputVec_d, (void *)&result_d,
&numOfBlocks};
kernelNodeParams.kernelParams = kernelArgs2;
kernelNodeParams.extra = NULL;
checkCudaErrors(
cudaGraphAddKernelNode(&kernelNode, graph, nodeDependencies.data(),
nodeDependencies.size(), &kernelNodeParams));
nodeDependencies.clear();
nodeDependencies.push_back(kernelNode);
memset(&memcpyParams, 0, sizeof(memcpyParams));
memcpyParams.srcArray = NULL;
memcpyParams.srcPos = make_cudaPos(0, 0, 0);
memcpyParams.srcPtr = make_cudaPitchedPtr(result_d, sizeof(double), 1, 1);
memcpyParams.dstArray = NULL;
memcpyParams.dstPos = make_cudaPos(0, 0, 0);
memcpyParams.dstPtr = make_cudaPitchedPtr(&result_h, sizeof(double), 1, 1);
memcpyParams.extent = make_cudaExtent(sizeof(double), 1, 1);
memcpyParams.kind = cudaMemcpyDeviceToHost;
checkCudaErrors(
cudaGraphAddMemcpyNode(&memcpyNode, graph, nodeDependencies.data(),
nodeDependencies.size(), &memcpyParams));
nodeDependencies.clear();
nodeDependencies.push_back(memcpyNode);
cudaGraphNode_t hostNode;
cudaHostNodeParams hostParams = {0};
hostParams.fn = myHostNodeCallback;
callBackData_t hostFnData;
hostFnData.data = &result_h;
hostFnData.fn_name = "cudaGraphsManual";
hostParams.userData = &hostFnData;
checkCudaErrors(cudaGraphAddHostNode(&hostNode, graph,
nodeDependencies.data(),
nodeDependencies.size(), &hostParams));
cudaGraphNode_t *nodes = NULL;
size_t numNodes = 0;
checkCudaErrors(cudaGraphGetNodes(graph, nodes, &numNodes));
printf("\nNum of nodes in the graph created manually = %zu\n", numNodes);
cudaGraphExec_t graphExec;
checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
cudaGraph_t clonedGraph;
cudaGraphExec_t clonedGraphExec;
checkCudaErrors(cudaGraphClone(&clonedGraph, graph));
checkCudaErrors(
cudaGraphInstantiate(&clonedGraphExec, clonedGraph, NULL, NULL, 0));
for (int i = 0; i < GRAPH_LAUNCH_ITERATIONS; i++) {
checkCudaErrors(cudaGraphLaunch(graphExec, streamForGraph));
}
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
printf("Cloned Graph Output.. \n");
for (int i = 0; i < GRAPH_LAUNCH_ITERATIONS; i++) {
checkCudaErrors(cudaGraphLaunch(clonedGraphExec, streamForGraph));
}
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
checkCudaErrors(cudaGraphExecDestroy(graphExec));
checkCudaErrors(cudaGraphExecDestroy(clonedGraphExec));
checkCudaErrors(cudaGraphDestroy(graph));
checkCudaErrors(cudaGraphDestroy(clonedGraph));
checkCudaErrors(cudaStreamDestroy(streamForGraph));
}
void cudaGraphsUsingStreamCapture(float *inputVec_h, float *inputVec_d,
double *outputVec_d, double *result_d,
size_t inputSize, size_t numOfBlocks) {
cudaStream_t stream1, stream2, stream3, streamForGraph;
cudaEvent_t forkStreamEvent, memsetEvent1, memsetEvent2;
cudaGraph_t graph;
double result_h = 0.0;
checkCudaErrors(cudaStreamCreate(&stream1));
checkCudaErrors(cudaStreamCreate(&stream2));
checkCudaErrors(cudaStreamCreate(&stream3));
checkCudaErrors(cudaStreamCreate(&streamForGraph));
checkCudaErrors(cudaEventCreate(&forkStreamEvent));
checkCudaErrors(cudaEventCreate(&memsetEvent1));
checkCudaErrors(cudaEventCreate(&memsetEvent2));
checkCudaErrors(cudaStreamBeginCapture(stream1, cudaStreamCaptureModeGlobal));
checkCudaErrors(cudaEventRecord(forkStreamEvent, stream1));
checkCudaErrors(cudaStreamWaitEvent(stream2, forkStreamEvent, 0));
checkCudaErrors(cudaStreamWaitEvent(stream3, forkStreamEvent, 0));
checkCudaErrors(cudaMemcpyAsync(inputVec_d, inputVec_h,
sizeof(float) * inputSize, cudaMemcpyDefault,
stream1));
checkCudaErrors(
cudaMemsetAsync(outputVec_d, 0, sizeof(double) * numOfBlocks, stream2));
checkCudaErrors(cudaEventRecord(memsetEvent1, stream2));
checkCudaErrors(cudaMemsetAsync(result_d, 0, sizeof(double), stream3));
checkCudaErrors(cudaEventRecord(memsetEvent2, stream3));
checkCudaErrors(cudaStreamWaitEvent(stream1, memsetEvent1, 0));
reduce<<<numOfBlocks, THREADS_PER_BLOCK, 0, stream1>>>(
inputVec_d, outputVec_d, inputSize, numOfBlocks);
checkCudaErrors(cudaStreamWaitEvent(stream1, memsetEvent2, 0));
reduceFinal<<<1, THREADS_PER_BLOCK, 0, stream1>>>(outputVec_d, result_d,
numOfBlocks);
checkCudaErrors(cudaMemcpyAsync(&result_h, result_d, sizeof(double),
cudaMemcpyDefault, stream1));
callBackData_t hostFnData = {0};
hostFnData.data = &result_h;
hostFnData.fn_name = "cudaGraphsUsingStreamCapture";
cudaHostFn_t fn = myHostNodeCallback;
checkCudaErrors(cudaLaunchHostFunc(stream1, fn, &hostFnData));
checkCudaErrors(cudaStreamEndCapture(stream1, &graph));
cudaGraphNode_t *nodes = NULL;
size_t numNodes = 0;
checkCudaErrors(cudaGraphGetNodes(graph, nodes, &numNodes));
printf("\nNum of nodes in the graph created using stream capture API = %zu\n",
numNodes);
cudaGraphExec_t graphExec;
checkCudaErrors(cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0));
cudaGraph_t clonedGraph;
cudaGraphExec_t clonedGraphExec;
checkCudaErrors(cudaGraphClone(&clonedGraph, graph));
checkCudaErrors(
cudaGraphInstantiate(&clonedGraphExec, clonedGraph, NULL, NULL, 0));
for (int i = 0; i < GRAPH_LAUNCH_ITERATIONS; i++) {
checkCudaErrors(cudaGraphLaunch(graphExec, streamForGraph));
}
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
printf("Cloned Graph Output.. \n");
for (int i = 0; i < GRAPH_LAUNCH_ITERATIONS; i++) {
checkCudaErrors(cudaGraphLaunch(clonedGraphExec, streamForGraph));
}
checkCudaErrors(cudaStreamSynchronize(streamForGraph));
checkCudaErrors(cudaGraphExecDestroy(graphExec));
checkCudaErrors(cudaGraphExecDestroy(clonedGraphExec));
checkCudaErrors(cudaGraphDestroy(graph));
checkCudaErrors(cudaGraphDestroy(clonedGraph));
checkCudaErrors(cudaStreamDestroy(stream1));
checkCudaErrors(cudaStreamDestroy(stream2));
checkCudaErrors(cudaStreamDestroy(streamForGraph));
}
int main(int argc, char **argv) {
size_t size = 1 << 24; // number of elements to reduce
size_t maxBlocks = 512;
// This will pick the best possible CUDA capable device
int devID = findCudaDevice(argc, (const char **)argv);
printf("%zu elements\n", size);
printf("threads per block = %d\n", THREADS_PER_BLOCK);
printf("Graph Launch iterations = %d\n", GRAPH_LAUNCH_ITERATIONS);
float *inputVec_d = NULL, *inputVec_h = NULL;
double *outputVec_d = NULL, *result_d;
checkCudaErrors(cudaMallocHost(&inputVec_h, sizeof(float) * size));
checkCudaErrors(cudaMalloc(&inputVec_d, sizeof(float) * size));
checkCudaErrors(cudaMalloc(&outputVec_d, sizeof(double) * maxBlocks));
checkCudaErrors(cudaMalloc(&result_d, sizeof(double)));
init_input(inputVec_h, size);
cudaGraphsManual(inputVec_h, inputVec_d, outputVec_d, result_d, size,
maxBlocks);
cudaGraphsUsingStreamCapture(inputVec_h, inputVec_d, outputVec_d, result_d,
size, maxBlocks);
checkCudaErrors(cudaFree(inputVec_d));
checkCudaErrors(cudaFree(outputVec_d));
checkCudaErrors(cudaFree(result_d));
checkCudaErrors(cudaFreeHost(inputVec_h));
return EXIT_SUCCESS;
}
|