1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
#define WINDOWS_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#pragma warning(disable : 4819)
#endif
#include <Exceptions.h>
#include <ImageIO.h>
#include <ImagesCPU.h>
#include <ImagesNPP.h>
#include <string.h>
#include <fstream>
#include <iostream>
#include <cuda_runtime.h>
#include <npp.h>
#include <helper_cuda.h>
#include <helper_string.h>
inline int cudaDeviceInit(int argc, const char **argv) {
int deviceCount;
checkCudaErrors(cudaGetDeviceCount(&deviceCount));
if (deviceCount == 0) {
std::cerr << "CUDA error: no devices supporting CUDA." << std::endl;
exit(EXIT_FAILURE);
}
int dev = findCudaDevice(argc, argv);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
std::cerr << "cudaSetDevice GPU" << dev << " = " << deviceProp.name
<< std::endl;
checkCudaErrors(cudaSetDevice(dev));
return dev;
}
bool printfNPPinfo(int argc, char *argv[]) {
const NppLibraryVersion *libVer = nppGetLibVersion();
printf("NPP Library Version %d.%d.%d\n", libVer->major, libVer->minor,
libVer->build);
int driverVersion, runtimeVersion;
cudaDriverGetVersion(&driverVersion);
cudaRuntimeGetVersion(&runtimeVersion);
printf(" CUDA Driver Version: %d.%d\n", driverVersion / 1000,
(driverVersion % 100) / 10);
printf(" CUDA Runtime Version: %d.%d\n", runtimeVersion / 1000,
(runtimeVersion % 100) / 10);
// Min spec is SM 1.0 devices
bool bVal = checkCudaCapabilities(1, 0);
return bVal;
}
int main(int argc, char *argv[]) {
printf("%s Starting...\n\n", argv[0]);
try {
std::string sFilename;
char *filePath;
cudaDeviceInit(argc, (const char **)argv);
if (printfNPPinfo(argc, argv) == false) {
exit(EXIT_SUCCESS);
}
if (checkCmdLineFlag(argc, (const char **)argv, "input")) {
getCmdLineArgumentString(argc, (const char **)argv, "input", &filePath);
} else {
filePath = sdkFindFilePath("teapot512.pgm", argv[0]);
}
if (filePath) {
sFilename = filePath;
} else {
sFilename = "teapot512.pgm";
}
// if we specify the filename at the command line, then we only test
// sFilename[0].
int file_errors = 0;
std::ifstream infile(sFilename.data(), std::ifstream::in);
if (infile.good()) {
std::cout << "cannyEdgeDetectionNPP opened: <" << sFilename.data()
<< "> successfully!" << std::endl;
file_errors = 0;
infile.close();
} else {
std::cout << "cannyEdgeDetectionNPP unable to open: <" << sFilename.data()
<< ">" << std::endl;
file_errors++;
infile.close();
}
if (file_errors > 0) {
exit(EXIT_FAILURE);
}
std::string sResultFilename = sFilename;
std::string::size_type dot = sResultFilename.rfind('.');
if (dot != std::string::npos) {
sResultFilename = sResultFilename.substr(0, dot);
}
sResultFilename += "_cannyEdgeDetection.pgm";
if (checkCmdLineFlag(argc, (const char **)argv, "output")) {
char *outputFilePath;
getCmdLineArgumentString(argc, (const char **)argv, "output",
&outputFilePath);
sResultFilename = outputFilePath;
}
// declare a host image object for an 8-bit grayscale image
npp::ImageCPU_8u_C1 oHostSrc;
// load gray-scale image from disk
npp::loadImage(sFilename, oHostSrc);
// declare a device image and copy construct from the host image,
// i.e. upload host to device
npp::ImageNPP_8u_C1 oDeviceSrc(oHostSrc);
NppiSize oSrcSize = {(int)oDeviceSrc.width(), (int)oDeviceSrc.height()};
NppiPoint oSrcOffset = {0, 0};
// create struct with ROI size
NppiSize oSizeROI = {(int)oDeviceSrc.width(), (int)oDeviceSrc.height()};
// allocate device image of appropriately reduced size
npp::ImageNPP_8u_C1 oDeviceDst(oSizeROI.width, oSizeROI.height);
int nBufferSize = 0;
Npp8u *pScratchBufferNPP = 0;
// get necessary scratch buffer size and allocate that much device memory
NPP_CHECK_NPP(nppiFilterCannyBorderGetBufferSize(oSizeROI, &nBufferSize));
cudaMalloc((void **)&pScratchBufferNPP, nBufferSize);
// now run the canny edge detection filter
// Using nppiNormL2 will produce larger magnitude values allowing for finer
// control of threshold values while nppiNormL1 will be slightly faster.
// Also, selecting the sobel gradient filter allows up to a 5x5 kernel size
// which can produce more precise results but is a bit slower. Commonly
// nppiNormL2 and sobel gradient filter size of 3x3 are used. Canny
// recommends that the high threshold value should be about 3 times the low
// threshold value. The threshold range will depend on the range of
// magnitude values that the sobel gradient filter generates for a
// particular image.
Npp16s nLowThreshold = 72;
Npp16s nHighThreshold = 256;
if ((nBufferSize > 0) && (pScratchBufferNPP != 0)) {
NPP_CHECK_NPP(nppiFilterCannyBorder_8u_C1R(
oDeviceSrc.data(), oDeviceSrc.pitch(), oSrcSize, oSrcOffset,
oDeviceDst.data(), oDeviceDst.pitch(), oSizeROI, NPP_FILTER_SOBEL,
NPP_MASK_SIZE_3_X_3, nLowThreshold, nHighThreshold, nppiNormL2,
NPP_BORDER_REPLICATE, pScratchBufferNPP));
}
// free scratch buffer memory
cudaFree(pScratchBufferNPP);
// declare a host image for the result
npp::ImageCPU_8u_C1 oHostDst(oDeviceDst.size());
// and copy the device result data into it
oDeviceDst.copyTo(oHostDst.data(), oHostDst.pitch());
saveImage(sResultFilename, oHostDst);
std::cout << "Saved image: " << sResultFilename << std::endl;
nppiFree(oDeviceSrc.data());
nppiFree(oDeviceDst.data());
exit(EXIT_SUCCESS);
} catch (npp::Exception &rException) {
std::cerr << "Program error! The following exception occurred: \n";
std::cerr << rException << std::endl;
std::cerr << "Aborting." << std::endl;
exit(EXIT_FAILURE);
} catch (...) {
std::cerr << "Program error! An unknow type of exception occurred. \n";
std::cerr << "Aborting." << std::endl;
exit(EXIT_FAILURE);
return -1;
}
return 0;
}
|