1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample implements a conjugate gradient solver on GPU
* using CUBLAS and CUSPARSE
*
*/
// includes, system
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* Using updated (v2) interfaces to cublas and cusparse */
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include <cusparse.h>
// Utilities and system includes
#include <helper_cuda.h> // helper function CUDA error checking and initialization
#include <helper_functions.h> // helper for shared functions common to CUDA Samples
const char *sSDKname = "conjugateGradientUM";
/* genTridiag: generate a random tridiagonal symmetric matrix */
void genTridiag(int *I, int *J, float *val, int N, int nz) {
I[0] = 0, J[0] = 0, J[1] = 1;
val[0] = (float)rand() / RAND_MAX + 10.0f;
val[1] = (float)rand() / RAND_MAX;
int start;
for (int i = 1; i < N; i++) {
if (i > 1) {
I[i] = I[i - 1] + 3;
} else {
I[1] = 2;
}
start = (i - 1) * 3 + 2;
J[start] = i - 1;
J[start + 1] = i;
if (i < N - 1) {
J[start + 2] = i + 1;
}
val[start] = val[start - 1];
val[start + 1] = (float)rand() / RAND_MAX + 10.0f;
if (i < N - 1) {
val[start + 2] = (float)rand() / RAND_MAX;
}
}
I[N] = nz;
}
int main(int argc, char **argv) {
int N = 0, nz = 0, *I = NULL, *J = NULL;
float *val = NULL;
const float tol = 1e-5f;
const int max_iter = 10000;
float *x;
float *rhs;
float a, b, na, r0, r1;
float dot;
float *r, *p, *Ax;
int k;
float alpha, beta, alpham1;
printf("Starting [%s]...\n", sSDKname);
// This will pick the best possible CUDA capable device
cudaDeviceProp deviceProp;
int devID = findCudaDevice(argc, (const char **)argv);
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
if (!deviceProp.managedMemory) {
// This samples requires being run on a device that supports Unified Memory
fprintf(stderr, "Unified Memory not supported on this device\n");
exit(EXIT_WAIVED);
}
// Statistics about the GPU device
printf(
"> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n",
deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor);
/* Generate a random tridiagonal symmetric matrix in CSR format */
N = 1048576;
nz = (N - 2) * 3 + 4;
cudaMallocManaged((void **)&I, sizeof(int) * (N + 1));
cudaMallocManaged((void **)&J, sizeof(int) * nz);
cudaMallocManaged((void **)&val, sizeof(float) * nz);
genTridiag(I, J, val, N, nz);
cudaMallocManaged((void **)&x, sizeof(float) * N);
cudaMallocManaged((void **)&rhs, sizeof(float) * N);
for (int i = 0; i < N; i++) {
rhs[i] = 1.0;
x[i] = 0.0;
}
/* Get handle to the CUBLAS context */
cublasHandle_t cublasHandle = 0;
cublasStatus_t cublasStatus;
cublasStatus = cublasCreate(&cublasHandle);
checkCudaErrors(cublasStatus);
/* Get handle to the CUSPARSE context */
cusparseHandle_t cusparseHandle = 0;
cusparseStatus_t cusparseStatus;
cusparseStatus = cusparseCreate(&cusparseHandle);
checkCudaErrors(cusparseStatus);
cusparseMatDescr_t descr = 0;
cusparseStatus = cusparseCreateMatDescr(&descr);
checkCudaErrors(cusparseStatus);
cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL);
cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO);
// temp memory for CG
checkCudaErrors(cudaMallocManaged((void **)&r, N * sizeof(float)));
checkCudaErrors(cudaMallocManaged((void **)&p, N * sizeof(float)));
checkCudaErrors(cudaMallocManaged((void **)&Ax, N * sizeof(float)));
/* Wrap raw data into cuSPARSE generic API objects */
cusparseSpMatDescr_t matA = NULL;
checkCudaErrors(cusparseCreateCsr(&matA, N, N, nz, I, J, val,
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_BASE_ZERO, CUDA_R_32F));
cusparseDnVecDescr_t vecx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecx, N, x, CUDA_R_32F));
cusparseDnVecDescr_t vecp = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecp, N, p, CUDA_R_32F));
cusparseDnVecDescr_t vecAx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecAx, N, Ax, CUDA_R_32F));
cudaDeviceSynchronize();
for (int i = 0; i < N; i++) {
r[i] = rhs[i];
}
alpha = 1.0;
alpham1 = -1.0;
beta = 0.0;
r0 = 0.;
/* Allocate workspace for cuSPARSE */
size_t bufferSize = 0;
checkCudaErrors(cusparseSpMV_bufferSize(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecx,
&beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize));
void *buffer = NULL;
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
checkCudaErrors(cusparseSpMV(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
&alpha, matA, vecx, &beta, vecAx, CUDA_R_32F,
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
cublasSaxpy(cublasHandle, N, &alpham1, Ax, 1, r, 1);
cublasStatus = cublasSdot(cublasHandle, N, r, 1, r, 1, &r1);
k = 1;
while (r1 > tol * tol && k <= max_iter) {
if (k > 1) {
b = r1 / r0;
cublasStatus = cublasSscal(cublasHandle, N, &b, p, 1);
cublasStatus = cublasSaxpy(cublasHandle, N, &alpha, r, 1, p, 1);
} else {
cublasStatus = cublasScopy(cublasHandle, N, r, 1, p, 1);
}
checkCudaErrors(cusparseSpMV(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecp,
&beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, buffer));
cublasStatus = cublasSdot(cublasHandle, N, p, 1, Ax, 1, &dot);
a = r1 / dot;
cublasStatus = cublasSaxpy(cublasHandle, N, &a, p, 1, x, 1);
na = -a;
cublasStatus = cublasSaxpy(cublasHandle, N, &na, Ax, 1, r, 1);
r0 = r1;
cublasStatus = cublasSdot(cublasHandle, N, r, 1, r, 1, &r1);
cudaDeviceSynchronize();
printf("iteration = %3d, residual = %e\n", k, sqrt(r1));
k++;
}
printf("Final residual: %e\n", sqrt(r1));
fprintf(stdout, "&&&& conjugateGradientUM %s\n",
(sqrt(r1) < tol) ? "PASSED" : "FAILED");
float rsum, diff, err = 0.0;
for (int i = 0; i < N; i++) {
rsum = 0.0;
for (int j = I[i]; j < I[i + 1]; j++) {
rsum += val[j] * x[J[j]];
}
diff = fabs(rsum - rhs[i]);
if (diff > err) {
err = diff;
}
}
cusparseDestroy(cusparseHandle);
cublasDestroy(cublasHandle);
if (matA) {
checkCudaErrors(cusparseDestroySpMat(matA));
}
if (vecx) {
checkCudaErrors(cusparseDestroyDnVec(vecx));
}
if (vecAx) {
checkCudaErrors(cusparseDestroyDnVec(vecAx));
}
if (vecp) {
checkCudaErrors(cusparseDestroyDnVec(vecp));
}
cudaFree(I);
cudaFree(J);
cudaFree(val);
cudaFree(x);
cudaFree(rhs);
cudaFree(r);
cudaFree(p);
cudaFree(Ax);
printf("Test Summary: Error amount = %f, result = %s\n", err,
(k <= max_iter) ? "SUCCESS" : "FAILURE");
exit((k <= max_iter) ? EXIT_SUCCESS : EXIT_FAILURE);
}
|