1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Test three linear solvers, including Cholesky, LU and QR.
* The user has to prepare a sparse matrix of "matrix market format" (with
extension .mtx).
* For example, the user can download matrices in Florida Sparse Matrix
Collection.
* (http://www.cise.ufl.edu/research/sparse/matrices/)
*
* The user needs to choose a solver by the switch -R<solver> and
* to provide the path of the matrix by the switch -F<file>, then
* the program solves
* A*x = b
* and reports relative error
* |b-A*x|/(|A|*|x|+|b|)
*
* How does it work?
* The example solves A*x = b by the following steps
* step 1: B = A(Q,Q)
* Q is the ordering to minimize zero fill-in.
* The user can choose symrcm or symamd.
* step 2: solve B*z = Q*b
* step 3: x = inv(Q)*z
*
* Above three steps can be combined by the formula
* (Q*A*Q')*(Q*x) = (Q*b)
*
* The elapsed time is also reported so the user can compare efficiency of
different solvers.
*
* How to use
/cuSolverSp_LinearSolver // Default: Cholesky, symrcm &
file=lap2D_5pt_n100.mtx
* ./cuSolverSp_LinearSolver -R=chol -file=<file> // cholesky
factorization
* ./cuSolverSp_LinearSolver -R=lu -P=symrcm -file=<file> // symrcm + LU
with partial pivoting
* ./cuSolverSp_LinearSolver -R=qr -P=symamd -file=<file> // symamd + QR
factorization
*
*
* Remark: the absolute error on solution x is meaningless without knowing
condition number of A.
* The relative error on residual should be close to machine zero,
i.e. 1.e-15.
*/
#include <assert.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cuda_runtime.h>
#include "cusolverSp.h"
#include "cusparse.h"
#include "helper_cuda.h"
#include "helper_cusolver.h"
template <typename T_ELEM>
int loadMMSparseMatrix(char *filename, char elem_type, bool csrFormat, int *m,
int *n, int *nnz, T_ELEM **aVal, int **aRowInd,
int **aColInd, int extendSymMatrix);
void UsageSP(void) {
printf("<options>\n");
printf("-h : display this help\n");
printf("-R=<name> : choose a linear solver\n");
printf(" chol (cholesky factorization), this is default\n");
printf(" qr (QR factorization)\n");
printf(" lu (LU factorization)\n");
printf("-P=<name> : choose a reordering\n");
printf(" symrcm (Reverse Cuthill-McKee)\n");
printf(" symamd (Approximate Minimum Degree)\n");
printf(" metis (nested dissection)\n");
printf("-file=<filename> : filename containing a matrix in MM format\n");
printf("-device=<device_id> : <device_id> if want to run on specific GPU\n");
exit(0);
}
void parseCommandLineArguments(int argc, char *argv[], struct testOpts &opts) {
memset(&opts, 0, sizeof(opts));
if (checkCmdLineFlag(argc, (const char **)argv, "-h")) {
UsageSP();
}
if (checkCmdLineFlag(argc, (const char **)argv, "R")) {
char *solverType = NULL;
getCmdLineArgumentString(argc, (const char **)argv, "R", &solverType);
if (solverType) {
if ((STRCASECMP(solverType, "chol") != 0) &&
(STRCASECMP(solverType, "lu") != 0) &&
(STRCASECMP(solverType, "qr") != 0)) {
printf("\nIncorrect argument passed to -R option\n");
UsageSP();
} else {
opts.testFunc = solverType;
}
}
}
if (checkCmdLineFlag(argc, (const char **)argv, "P")) {
char *reorderType = NULL;
getCmdLineArgumentString(argc, (const char **)argv, "P", &reorderType);
if (reorderType) {
if ((STRCASECMP(reorderType, "symrcm") != 0) &&
(STRCASECMP(reorderType, "symamd") != 0) &&
(STRCASECMP(reorderType, "metis") != 0)) {
printf("\nIncorrect argument passed to -P option\n");
UsageSP();
} else {
opts.reorder = reorderType;
}
}
}
if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
char *fileName = 0;
getCmdLineArgumentString(argc, (const char **)argv, "file", &fileName);
if (fileName) {
opts.sparse_mat_filename = fileName;
} else {
printf("\nIncorrect filename passed to -file \n ");
UsageSP();
}
}
}
int main(int argc, char *argv[]) {
struct testOpts opts;
cusolverSpHandle_t handle = NULL;
cusparseHandle_t cusparseHandle = NULL; /* used in residual evaluation */
cudaStream_t stream = NULL;
cusparseMatDescr_t descrA = NULL;
int rowsA = 0; /* number of rows of A */
int colsA = 0; /* number of columns of A */
int nnzA = 0; /* number of nonzeros of A */
int baseA = 0; /* base index in CSR format */
/* CSR(A) from I/O */
int *h_csrRowPtrA = NULL;
int *h_csrColIndA = NULL;
double *h_csrValA = NULL;
double *h_z = NULL; /* z = B \ (Q*b) */
double *h_x = NULL; /* x = A \ b */
double *h_b = NULL; /* b = ones(n,1) */
double *h_Qb = NULL; /* Q*b */
double *h_r = NULL; /* r = b - A*x */
int *h_Q = NULL; /* <int> n */
/* reorder to reduce zero fill-in */
/* Q = symrcm(A) or Q = symamd(A) */
/* B = Q*A*Q' or B = A(Q,Q) by MATLAB notation */
int *h_csrRowPtrB = NULL; /* <int> n+1 */
int *h_csrColIndB = NULL; /* <int> nnzA */
double *h_csrValB = NULL; /* <double> nnzA */
int *h_mapBfromA = NULL; /* <int> nnzA */
size_t size_perm = 0;
void *buffer_cpu = NULL; /* working space for permutation: B = Q*A*Q^T */
/* device copy of A: used in residual evaluation */
int *d_csrRowPtrA = NULL;
int *d_csrColIndA = NULL;
double *d_csrValA = NULL;
/* device copy of B: used in B*z = Q*b */
int *d_csrRowPtrB = NULL;
int *d_csrColIndB = NULL;
double *d_csrValB = NULL;
int *d_Q = NULL; /* device copy of h_Q */
double *d_z = NULL; /* z = B \ Q*b */
double *d_x = NULL; /* x = A \ b */
double *d_b = NULL; /* a copy of h_b */
double *d_Qb = NULL; /* a copy of h_Qb */
double *d_r = NULL; /* r = b - A*x */
double tol = 1.e-12;
const int reorder = 0; /* no reordering */
int singularity = 0; /* -1 if A is invertible under tol. */
/* the constants are used in residual evaluation, r = b - A*x */
const double minus_one = -1.0;
const double one = 1.0;
double b_inf = 0.0;
double x_inf = 0.0;
double r_inf = 0.0;
double A_inf = 0.0;
int errors = 0;
int issym = 0;
double start, stop;
double time_solve_cpu;
double time_solve_gpu;
parseCommandLineArguments(argc, argv, opts);
if (NULL == opts.testFunc) {
opts.testFunc =
"chol"; /* By default running Cholesky as NO solver selected with -R
option. */
}
findCudaDevice(argc, (const char **)argv);
if (opts.sparse_mat_filename == NULL) {
opts.sparse_mat_filename = sdkFindFilePath("lap2D_5pt_n100.mtx", argv[0]);
if (opts.sparse_mat_filename != NULL)
printf("Using default input file [%s]\n", opts.sparse_mat_filename);
else
printf("Could not find lap2D_5pt_n100.mtx\n");
} else {
printf("Using input file [%s]\n", opts.sparse_mat_filename);
}
printf("step 1: read matrix market format\n");
if (opts.sparse_mat_filename == NULL) {
fprintf(stderr, "Error: input matrix is not provided\n");
return EXIT_FAILURE;
}
if (loadMMSparseMatrix<double>(opts.sparse_mat_filename, 'd', true, &rowsA,
&colsA, &nnzA, &h_csrValA, &h_csrRowPtrA,
&h_csrColIndA, true)) {
exit(EXIT_FAILURE);
}
baseA = h_csrRowPtrA[0]; // baseA = {0,1}
printf("sparse matrix A is %d x %d with %d nonzeros, base=%d\n", rowsA, colsA,
nnzA, baseA);
if (rowsA != colsA) {
fprintf(stderr, "Error: only support square matrix\n");
return 1;
}
checkCudaErrors(cusolverSpCreate(&handle));
checkCudaErrors(cusparseCreate(&cusparseHandle));
checkCudaErrors(cudaStreamCreate(&stream));
/* bind stream to cusparse and cusolver*/
checkCudaErrors(cusolverSpSetStream(handle, stream));
checkCudaErrors(cusparseSetStream(cusparseHandle, stream));
/* configure matrix descriptor*/
checkCudaErrors(cusparseCreateMatDescr(&descrA));
checkCudaErrors(cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL));
if (baseA) {
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE));
} else {
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO));
}
h_z = (double *)malloc(sizeof(double) * colsA);
h_x = (double *)malloc(sizeof(double) * colsA);
h_b = (double *)malloc(sizeof(double) * rowsA);
h_Qb = (double *)malloc(sizeof(double) * rowsA);
h_r = (double *)malloc(sizeof(double) * rowsA);
h_Q = (int *)malloc(sizeof(int) * colsA);
h_csrRowPtrB = (int *)malloc(sizeof(int) * (rowsA + 1));
h_csrColIndB = (int *)malloc(sizeof(int) * nnzA);
h_csrValB = (double *)malloc(sizeof(double) * nnzA);
h_mapBfromA = (int *)malloc(sizeof(int) * nnzA);
assert(NULL != h_z);
assert(NULL != h_x);
assert(NULL != h_b);
assert(NULL != h_Qb);
assert(NULL != h_r);
assert(NULL != h_Q);
assert(NULL != h_csrRowPtrB);
assert(NULL != h_csrColIndB);
assert(NULL != h_csrValB);
assert(NULL != h_mapBfromA);
checkCudaErrors(
cudaMalloc((void **)&d_csrRowPtrA, sizeof(int) * (rowsA + 1)));
checkCudaErrors(cudaMalloc((void **)&d_csrColIndA, sizeof(int) * nnzA));
checkCudaErrors(cudaMalloc((void **)&d_csrValA, sizeof(double) * nnzA));
checkCudaErrors(
cudaMalloc((void **)&d_csrRowPtrB, sizeof(int) * (rowsA + 1)));
checkCudaErrors(cudaMalloc((void **)&d_csrColIndB, sizeof(int) * nnzA));
checkCudaErrors(cudaMalloc((void **)&d_csrValB, sizeof(double) * nnzA));
checkCudaErrors(cudaMalloc((void **)&d_Q, sizeof(int) * colsA));
checkCudaErrors(cudaMalloc((void **)&d_z, sizeof(double) * colsA));
checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(double) * colsA));
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(double) * rowsA));
checkCudaErrors(cudaMalloc((void **)&d_Qb, sizeof(double) * rowsA));
checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(double) * rowsA));
/* verify if A has symmetric pattern or not */
checkCudaErrors(cusolverSpXcsrissymHost(handle, rowsA, nnzA, descrA,
h_csrRowPtrA, h_csrRowPtrA + 1,
h_csrColIndA, &issym));
if (0 == strcmp(opts.testFunc, "chol")) {
if (!issym) {
printf("Error: A has no symmetric pattern, please use LU or QR \n");
exit(EXIT_FAILURE);
}
}
printf("step 2: reorder the matrix A to minimize zero fill-in\n");
printf(
" if the user choose a reordering by -P=symrcm, -P=symamd or "
"-P=metis\n");
if (NULL != opts.reorder) {
if (0 == strcmp(opts.reorder, "symrcm")) {
printf("step 2.1: Q = symrcm(A) \n");
checkCudaErrors(cusolverSpXcsrsymrcmHost(
handle, rowsA, nnzA, descrA, h_csrRowPtrA, h_csrColIndA, h_Q));
} else if (0 == strcmp(opts.reorder, "symamd")) {
printf("step 2.1: Q = symamd(A) \n");
checkCudaErrors(cusolverSpXcsrsymamdHost(
handle, rowsA, nnzA, descrA, h_csrRowPtrA, h_csrColIndA, h_Q));
} else if (0 == strcmp(opts.reorder, "metis")) {
printf("step 2.1: Q = metis(A) \n");
checkCudaErrors(cusolverSpXcsrmetisndHost(handle, rowsA, nnzA, descrA,
h_csrRowPtrA, h_csrColIndA,
NULL, /* default setting. */
h_Q));
} else {
fprintf(stderr, "Error: %s is unknown reordering\n", opts.reorder);
return 1;
}
} else {
printf("step 2.1: no reordering is chosen, Q = 0:n-1 \n");
for (int j = 0; j < rowsA; j++) {
h_Q[j] = j;
}
}
printf("step 2.2: B = A(Q,Q) \n");
memcpy(h_csrRowPtrB, h_csrRowPtrA, sizeof(int) * (rowsA + 1));
memcpy(h_csrColIndB, h_csrColIndA, sizeof(int) * nnzA);
checkCudaErrors(cusolverSpXcsrperm_bufferSizeHost(
handle, rowsA, colsA, nnzA, descrA, h_csrRowPtrB, h_csrColIndB, h_Q, h_Q,
&size_perm));
if (buffer_cpu) {
free(buffer_cpu);
}
buffer_cpu = (void *)malloc(sizeof(char) * size_perm);
assert(NULL != buffer_cpu);
/* h_mapBfromA = Identity */
for (int j = 0; j < nnzA; j++) {
h_mapBfromA[j] = j;
}
checkCudaErrors(cusolverSpXcsrpermHost(handle, rowsA, colsA, nnzA, descrA,
h_csrRowPtrB, h_csrColIndB, h_Q, h_Q,
h_mapBfromA, buffer_cpu));
/* B = A( mapBfromA ) */
for (int j = 0; j < nnzA; j++) {
h_csrValB[j] = h_csrValA[h_mapBfromA[j]];
}
printf("step 3: b(j) = 1 + j/n \n");
for (int row = 0; row < rowsA; row++) {
h_b[row] = 1.0 + ((double)row) / ((double)rowsA);
}
/* h_Qb = b(Q) */
for (int row = 0; row < rowsA; row++) {
h_Qb[row] = h_b[h_Q[row]];
}
printf("step 4: prepare data on device\n");
checkCudaErrors(cudaMemcpyAsync(d_csrRowPtrA, h_csrRowPtrA,
sizeof(int) * (rowsA + 1),
cudaMemcpyHostToDevice, stream));
checkCudaErrors(cudaMemcpyAsync(d_csrColIndA, h_csrColIndA,
sizeof(int) * nnzA, cudaMemcpyHostToDevice,
stream));
checkCudaErrors(cudaMemcpyAsync(d_csrValA, h_csrValA, sizeof(double) * nnzA,
cudaMemcpyHostToDevice, stream));
checkCudaErrors(cudaMemcpyAsync(d_csrRowPtrB, h_csrRowPtrB,
sizeof(int) * (rowsA + 1),
cudaMemcpyHostToDevice, stream));
checkCudaErrors(cudaMemcpyAsync(d_csrColIndB, h_csrColIndB,
sizeof(int) * nnzA, cudaMemcpyHostToDevice,
stream));
checkCudaErrors(cudaMemcpyAsync(d_csrValB, h_csrValB, sizeof(double) * nnzA,
cudaMemcpyHostToDevice, stream));
checkCudaErrors(cudaMemcpyAsync(d_b, h_b, sizeof(double) * rowsA,
cudaMemcpyHostToDevice, stream));
checkCudaErrors(cudaMemcpyAsync(d_Qb, h_Qb, sizeof(double) * rowsA,
cudaMemcpyHostToDevice, stream));
checkCudaErrors(cudaMemcpyAsync(d_Q, h_Q, sizeof(int) * rowsA,
cudaMemcpyHostToDevice, stream));
printf("step 5: solve A*x = b on CPU \n");
start = second();
/* solve B*z = Q*b */
if (0 == strcmp(opts.testFunc, "chol")) {
checkCudaErrors(cusolverSpDcsrlsvcholHost(
handle, rowsA, nnzA, descrA, h_csrValB, h_csrRowPtrB, h_csrColIndB,
h_Qb, tol, reorder, h_z, &singularity));
} else if (0 == strcmp(opts.testFunc, "lu")) {
checkCudaErrors(cusolverSpDcsrlsvluHost(
handle, rowsA, nnzA, descrA, h_csrValB, h_csrRowPtrB, h_csrColIndB,
h_Qb, tol, reorder, h_z, &singularity));
} else if (0 == strcmp(opts.testFunc, "qr")) {
checkCudaErrors(cusolverSpDcsrlsvqrHost(
handle, rowsA, nnzA, descrA, h_csrValB, h_csrRowPtrB, h_csrColIndB,
h_Qb, tol, reorder, h_z, &singularity));
} else {
fprintf(stderr, "Error: %s is unknown function\n", opts.testFunc);
return 1;
}
/* Q*x = z */
for (int row = 0; row < rowsA; row++) {
h_x[h_Q[row]] = h_z[row];
}
if (0 <= singularity) {
printf("WARNING: the matrix is singular at row %d under tol (%E)\n",
singularity, tol);
}
stop = second();
time_solve_cpu = stop - start;
printf("step 6: evaluate residual r = b - A*x (result on CPU)\n");
checkCudaErrors(cudaMemcpyAsync(d_r, d_b, sizeof(double) * rowsA,
cudaMemcpyDeviceToDevice, stream));
checkCudaErrors(cudaMemcpyAsync(d_x, h_x, sizeof(double) * colsA,
cudaMemcpyHostToDevice, stream));
/* Wrap raw data into cuSPARSE generic API objects */
cusparseSpMatDescr_t matA = NULL;
if (baseA) {
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
d_csrColIndA, d_csrValA,
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_BASE_ONE, CUDA_R_64F));
} else {
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
d_csrColIndA, d_csrValA,
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_BASE_ZERO, CUDA_R_64F));
}
cusparseDnVecDescr_t vecx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecx, colsA, d_x, CUDA_R_64F));
cusparseDnVecDescr_t vecAx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecAx, rowsA, d_r, CUDA_R_64F));
/* Allocate workspace for cuSPARSE */
size_t bufferSize = 0;
checkCudaErrors(cusparseSpMV_bufferSize(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx,
&one, vecAx, CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize));
void *buffer = NULL;
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
checkCudaErrors(cusparseSpMV(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
checkCudaErrors(cudaMemcpyAsync(h_r, d_r, sizeof(double) * rowsA,
cudaMemcpyDeviceToHost, stream));
/* wait until h_r is ready */
checkCudaErrors(cudaDeviceSynchronize());
b_inf = vec_norminf(rowsA, h_b);
x_inf = vec_norminf(colsA, h_x);
r_inf = vec_norminf(rowsA, h_r);
A_inf = csr_mat_norminf(rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA,
h_csrColIndA);
printf("(CPU) |b - A*x| = %E \n", r_inf);
printf("(CPU) |A| = %E \n", A_inf);
printf("(CPU) |x| = %E \n", x_inf);
printf("(CPU) |b| = %E \n", b_inf);
printf("(CPU) |b - A*x|/(|A|*|x| + |b|) = %E \n",
r_inf / (A_inf * x_inf + b_inf));
printf("step 7: solve A*x = b on GPU\n");
start = second();
/* solve B*z = Q*b */
if (0 == strcmp(opts.testFunc, "chol")) {
checkCudaErrors(cusolverSpDcsrlsvchol(
handle, rowsA, nnzA, descrA, d_csrValB, d_csrRowPtrB, d_csrColIndB,
d_Qb, tol, reorder, d_z, &singularity));
} else if (0 == strcmp(opts.testFunc, "lu")) {
printf("WARNING: no LU available on GPU \n");
} else if (0 == strcmp(opts.testFunc, "qr")) {
checkCudaErrors(cusolverSpDcsrlsvqr(handle, rowsA, nnzA, descrA, d_csrValB,
d_csrRowPtrB, d_csrColIndB, d_Qb, tol,
reorder, d_z, &singularity));
} else {
fprintf(stderr, "Error: %s is unknow function\n", opts.testFunc);
return 1;
}
checkCudaErrors(cudaDeviceSynchronize());
if (0 <= singularity) {
printf("WARNING: the matrix is singular at row %d under tol (%E)\n",
singularity, tol);
}
/* Q*x = z */
cusparseSpVecDescr_t vecz = NULL;
checkCudaErrors(cusparseCreateSpVec(&vecz, colsA, rowsA, d_Q, d_z, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_BASE_ZERO, CUDA_R_64F));
checkCudaErrors(cusparseScatter(cusparseHandle, vecz, vecx));
checkCudaErrors(cusparseDestroySpVec(vecz));
checkCudaErrors(cudaDeviceSynchronize());
stop = second();
time_solve_gpu = stop - start;
printf("step 8: evaluate residual r = b - A*x (result on GPU)\n");
checkCudaErrors(cudaMemcpyAsync(d_r, d_b, sizeof(double) * rowsA,
cudaMemcpyDeviceToDevice, stream));
checkCudaErrors(cusparseSpMV(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE,
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
checkCudaErrors(cudaMemcpyAsync(h_x, d_x, sizeof(double) * colsA,
cudaMemcpyDeviceToHost, stream));
checkCudaErrors(cudaMemcpyAsync(h_r, d_r, sizeof(double) * rowsA,
cudaMemcpyDeviceToHost, stream));
/* wait until h_x and h_r are ready */
checkCudaErrors(cudaDeviceSynchronize());
b_inf = vec_norminf(rowsA, h_b);
x_inf = vec_norminf(colsA, h_x);
r_inf = vec_norminf(rowsA, h_r);
if (0 != strcmp(opts.testFunc, "lu")) {
// only cholesky and qr have GPU version
printf("(GPU) |b - A*x| = %E \n", r_inf);
printf("(GPU) |A| = %E \n", A_inf);
printf("(GPU) |x| = %E \n", x_inf);
printf("(GPU) |b| = %E \n", b_inf);
printf("(GPU) |b - A*x|/(|A|*|x| + |b|) = %E \n",
r_inf / (A_inf * x_inf + b_inf));
}
fprintf(stdout, "timing %s: CPU = %10.6f sec , GPU = %10.6f sec\n",
opts.testFunc, time_solve_cpu, time_solve_gpu);
if (0 != strcmp(opts.testFunc, "lu")) {
printf("show last 10 elements of solution vector (GPU) \n");
printf("consistent result for different reordering and solver \n");
for (int j = rowsA - 10; j < rowsA; j++) {
printf("x[%d] = %E\n", j, h_x[j]);
}
}
if (handle) {
checkCudaErrors(cusolverSpDestroy(handle));
}
if (cusparseHandle) {
checkCudaErrors(cusparseDestroy(cusparseHandle));
}
if (stream) {
checkCudaErrors(cudaStreamDestroy(stream));
}
if (descrA) {
checkCudaErrors(cusparseDestroyMatDescr(descrA));
}
if (matA) {
checkCudaErrors(cusparseDestroySpMat(matA));
}
if (vecx) {
checkCudaErrors(cusparseDestroyDnVec(vecx));
}
if (vecAx) {
checkCudaErrors(cusparseDestroyDnVec(vecAx));
}
if (h_csrValA) {
free(h_csrValA);
}
if (h_csrRowPtrA) {
free(h_csrRowPtrA);
}
if (h_csrColIndA) {
free(h_csrColIndA);
}
if (h_z) {
free(h_z);
}
if (h_x) {
free(h_x);
}
if (h_b) {
free(h_b);
}
if (h_Qb) {
free(h_Qb);
}
if (h_r) {
free(h_r);
}
if (h_Q) {
free(h_Q);
}
if (h_csrRowPtrB) {
free(h_csrRowPtrB);
}
if (h_csrColIndB) {
free(h_csrColIndB);
}
if (h_csrValB) {
free(h_csrValB);
}
if (h_mapBfromA) {
free(h_mapBfromA);
}
if (buffer_cpu) {
free(buffer_cpu);
}
if (buffer) {
checkCudaErrors(cudaFree(buffer));
}
if (d_csrValA) {
checkCudaErrors(cudaFree(d_csrValA));
}
if (d_csrRowPtrA) {
checkCudaErrors(cudaFree(d_csrRowPtrA));
}
if (d_csrColIndA) {
checkCudaErrors(cudaFree(d_csrColIndA));
}
if (d_csrValB) {
checkCudaErrors(cudaFree(d_csrValB));
}
if (d_csrRowPtrB) {
checkCudaErrors(cudaFree(d_csrRowPtrB));
}
if (d_csrColIndB) {
checkCudaErrors(cudaFree(d_csrColIndB));
}
if (d_Q) {
checkCudaErrors(cudaFree(d_Q));
}
if (d_z) {
checkCudaErrors(cudaFree(d_z));
}
if (d_x) {
checkCudaErrors(cudaFree(d_x));
}
if (d_b) {
checkCudaErrors(cudaFree(d_b));
}
if (d_Qb) {
checkCudaErrors(cudaFree(d_Qb));
}
if (d_r) {
checkCudaErrors(cudaFree(d_r));
}
return 0;
}
|