1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <ctype.h>
#include <cuda_runtime.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "cusolverSp.h"
#include "cusolverSp_LOWLEVEL_PREVIEW.h"
#include "helper_cuda.h"
#include "helper_cusolver.h"
template <typename T_ELEM>
int loadMMSparseMatrix(char *filename, char elem_type, bool csrFormat, int *m,
int *n, int *nnz, T_ELEM **aVal, int **aRowInd,
int **aColInd, int extendSymMatrix);
void UsageSP(void) {
printf("<options>\n");
printf("-h : display this help\n");
printf("-file=<filename> : filename containing a matrix in MM format\n");
printf("-device=<device_id> : <device_id> if want to run on specific GPU\n");
exit(0);
}
void parseCommandLineArguments(int argc, char *argv[], struct testOpts &opts) {
memset(&opts, 0, sizeof(opts));
if (checkCmdLineFlag(argc, (const char **)argv, "-h")) {
UsageSP();
}
if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
char *fileName = 0;
getCmdLineArgumentString(argc, (const char **)argv, "file", &fileName);
if (fileName) {
opts.sparse_mat_filename = fileName;
} else {
printf("\nIncorrect filename passed to -file \n ");
UsageSP();
}
}
}
int main(int argc, char *argv[]) {
struct testOpts opts;
cusolverSpHandle_t cusolverSpH =
NULL; // reordering, permutation and 1st LU factorization
cusparseHandle_t cusparseH = NULL; // residual evaluation
cudaStream_t stream = NULL;
cusparseMatDescr_t descrA = NULL; // A is a base-0 general matrix
csrqrInfoHost_t h_info =
NULL; // opaque info structure for LU with parital pivoting
csrqrInfo_t d_info =
NULL; // opaque info structure for LU with parital pivoting
int rowsA = 0; // number of rows of A
int colsA = 0; // number of columns of A
int nnzA = 0; // number of nonzeros of A
int baseA = 0; // base index in CSR format
// CSR(A) from I/O
int *h_csrRowPtrA = NULL; // <int> n+1
int *h_csrColIndA = NULL; // <int> nnzA
double *h_csrValA = NULL; // <double> nnzA
double *h_x = NULL; // <double> n, x = A \ b
double *h_b = NULL; // <double> n, b = ones(m,1)
double *h_bcopy = NULL; // <double> n, b = ones(m,1)
double *h_r = NULL; // <double> n, r = b - A*x
size_t size_internal = 0;
size_t size_chol = 0; // size of working space for csrlu
void *buffer_cpu = NULL; // working space for Cholesky
void *buffer_gpu = NULL; // working space for Cholesky
int *d_csrRowPtrA = NULL; // <int> n+1
int *d_csrColIndA = NULL; // <int> nnzA
double *d_csrValA = NULL; // <double> nnzA
double *d_x = NULL; // <double> n, x = A \ b
double *d_b = NULL; // <double> n, a copy of h_b
double *d_r = NULL; // <double> n, r = b - A*x
// the constants used in residual evaluation, r = b - A*x
const double minus_one = -1.0;
const double one = 1.0;
const double zero = 0.0;
// the constant used in cusolverSp
// singularity is -1 if A is invertible under tol
// tol determines the condition of singularity
int singularity = 0;
const double tol = 1.e-14;
double x_inf = 0.0; // |x|
double r_inf = 0.0; // |r|
double A_inf = 0.0; // |A|
parseCommandLineArguments(argc, argv, opts);
findCudaDevice(argc, (const char **)argv);
if (opts.sparse_mat_filename == NULL) {
opts.sparse_mat_filename = sdkFindFilePath("lap2D_5pt_n32.mtx", argv[0]);
if (opts.sparse_mat_filename != NULL)
printf("Using default input file [%s]\n", opts.sparse_mat_filename);
else
printf("Could not find lap2D_5pt_n32.mtx\n");
} else {
printf("Using input file [%s]\n", opts.sparse_mat_filename);
}
printf("step 1: read matrix market format\n");
if (opts.sparse_mat_filename) {
if (loadMMSparseMatrix<double>(opts.sparse_mat_filename, 'd', true, &rowsA,
&colsA, &nnzA, &h_csrValA, &h_csrRowPtrA,
&h_csrColIndA, true)) {
return 1;
}
baseA = h_csrRowPtrA[0]; // baseA = {0,1}
} else {
fprintf(stderr, "Error: input matrix is not provided\n");
return 1;
}
if (rowsA != colsA) {
fprintf(stderr, "Error: only support square matrix\n");
return 1;
}
printf("sparse matrix A is %d x %d with %d nonzeros, base=%d\n", rowsA, colsA,
nnzA, baseA);
checkCudaErrors(cusolverSpCreate(&cusolverSpH));
checkCudaErrors(cusparseCreate(&cusparseH));
checkCudaErrors(cudaStreamCreate(&stream));
checkCudaErrors(cusolverSpSetStream(cusolverSpH, stream));
checkCudaErrors(cusparseSetStream(cusparseH, stream));
checkCudaErrors(cusparseCreateMatDescr(&descrA));
checkCudaErrors(cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL));
if (baseA) {
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE));
} else {
checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO));
}
h_x = (double *)malloc(sizeof(double) * colsA);
h_b = (double *)malloc(sizeof(double) * rowsA);
h_bcopy = (double *)malloc(sizeof(double) * rowsA);
h_r = (double *)malloc(sizeof(double) * rowsA);
assert(NULL != h_x);
assert(NULL != h_b);
assert(NULL != h_bcopy);
assert(NULL != h_r);
checkCudaErrors(
cudaMalloc((void **)&d_csrRowPtrA, sizeof(int) * (rowsA + 1)));
checkCudaErrors(cudaMalloc((void **)&d_csrColIndA, sizeof(int) * nnzA));
checkCudaErrors(cudaMalloc((void **)&d_csrValA, sizeof(double) * nnzA));
checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(double) * colsA));
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(double) * rowsA));
checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(double) * rowsA));
for (int row = 0; row < rowsA; row++) {
h_b[row] = 1.0;
}
memcpy(h_bcopy, h_b, sizeof(double) * rowsA);
printf("step 2: create opaque info structure\n");
checkCudaErrors(cusolverSpCreateCsrqrInfoHost(&h_info));
printf("step 3: analyze qr(A) to know structure of L\n");
checkCudaErrors(cusolverSpXcsrqrAnalysisHost(cusolverSpH, rowsA, colsA, nnzA,
descrA, h_csrRowPtrA,
h_csrColIndA, h_info));
printf("step 4: workspace for qr(A)\n");
checkCudaErrors(cusolverSpDcsrqrBufferInfoHost(
cusolverSpH, rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA,
h_csrColIndA, h_info, &size_internal, &size_chol));
if (buffer_cpu) {
free(buffer_cpu);
}
buffer_cpu = (void *)malloc(sizeof(char) * size_chol);
assert(NULL != buffer_cpu);
printf("step 5: compute A = L*L^T \n");
checkCudaErrors(cusolverSpDcsrqrSetupHost(cusolverSpH, rowsA, colsA, nnzA,
descrA, h_csrValA, h_csrRowPtrA,
h_csrColIndA, zero, h_info));
checkCudaErrors(cusolverSpDcsrqrFactorHost(cusolverSpH, rowsA, colsA, nnzA,
NULL, NULL, h_info, buffer_cpu));
printf("step 6: check if the matrix is singular \n");
checkCudaErrors(
cusolverSpDcsrqrZeroPivotHost(cusolverSpH, h_info, tol, &singularity));
if (0 <= singularity) {
fprintf(stderr, "Error: A is not invertible, singularity=%d\n",
singularity);
return 1;
}
printf("step 7: solve A*x = b \n");
checkCudaErrors(cusolverSpDcsrqrSolveHost(cusolverSpH, rowsA, colsA, h_b, h_x,
h_info, buffer_cpu));
printf("step 8: evaluate residual r = b - A*x (result on CPU)\n");
// use GPU gemv to compute r = b - A*x
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA,
sizeof(int) * (rowsA + 1),
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int) * nnzA,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrValA, h_csrValA, sizeof(double) * nnzA,
cudaMemcpyHostToDevice));
checkCudaErrors(
cudaMemcpy(d_r, h_bcopy, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
checkCudaErrors(
cudaMemcpy(d_x, h_x, sizeof(double) * colsA, cudaMemcpyHostToDevice));
/* Wrap raw data into cuSPARSE generic API objects */
cusparseSpMatDescr_t matA = NULL;
if (baseA) {
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
d_csrColIndA, d_csrValA,
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_BASE_ONE, CUDA_R_64F));
} else {
checkCudaErrors(cusparseCreateCsr(&matA, rowsA, colsA, nnzA, d_csrRowPtrA,
d_csrColIndA, d_csrValA,
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_BASE_ZERO, CUDA_R_64F));
}
cusparseDnVecDescr_t vecx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecx, colsA, d_x, CUDA_R_64F));
cusparseDnVecDescr_t vecAx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecAx, rowsA, d_r, CUDA_R_64F));
/* Allocate workspace for cuSPARSE */
size_t bufferSize = 0;
checkCudaErrors(cusparseSpMV_bufferSize(
cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx, &one,
vecAx, CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize));
void *buffer = NULL;
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
checkCudaErrors(cusparseSpMV(cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE,
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
checkCudaErrors(
cudaMemcpy(h_r, d_r, sizeof(double) * rowsA, cudaMemcpyDeviceToHost));
x_inf = vec_norminf(colsA, h_x);
r_inf = vec_norminf(rowsA, h_r);
A_inf = csr_mat_norminf(rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA,
h_csrColIndA);
printf("(CPU) |b - A*x| = %E \n", r_inf);
printf("(CPU) |A| = %E \n", A_inf);
printf("(CPU) |x| = %E \n", x_inf);
printf("(CPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf / (A_inf * x_inf));
printf("step 9: create opaque info structure\n");
checkCudaErrors(cusolverSpCreateCsrqrInfo(&d_info));
checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA,
sizeof(int) * (rowsA + 1),
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int) * nnzA,
cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_csrValA, h_csrValA, sizeof(double) * nnzA,
cudaMemcpyHostToDevice));
checkCudaErrors(
cudaMemcpy(d_b, h_bcopy, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
printf("step 10: analyze qr(A) to know structure of L\n");
checkCudaErrors(cusolverSpXcsrqrAnalysis(cusolverSpH, rowsA, colsA, nnzA,
descrA, d_csrRowPtrA, d_csrColIndA,
d_info));
printf("step 11: workspace for qr(A)\n");
checkCudaErrors(cusolverSpDcsrqrBufferInfo(
cusolverSpH, rowsA, colsA, nnzA, descrA, d_csrValA, d_csrRowPtrA,
d_csrColIndA, d_info, &size_internal, &size_chol));
printf("GPU buffer size = %lld bytes\n", (signed long long)size_chol);
if (buffer_gpu) {
checkCudaErrors(cudaFree(buffer_gpu));
}
checkCudaErrors(cudaMalloc(&buffer_gpu, sizeof(char) * size_chol));
printf("step 12: compute A = L*L^T \n");
checkCudaErrors(cusolverSpDcsrqrSetup(cusolverSpH, rowsA, colsA, nnzA, descrA,
d_csrValA, d_csrRowPtrA, d_csrColIndA,
zero, d_info));
checkCudaErrors(cusolverSpDcsrqrFactor(cusolverSpH, rowsA, colsA, nnzA, NULL,
NULL, d_info, buffer_gpu));
printf("step 13: check if the matrix is singular \n");
checkCudaErrors(
cusolverSpDcsrqrZeroPivot(cusolverSpH, d_info, tol, &singularity));
if (0 <= singularity) {
fprintf(stderr, "Error: A is not invertible, singularity=%d\n",
singularity);
return 1;
}
printf("step 14: solve A*x = b \n");
checkCudaErrors(cusolverSpDcsrqrSolve(cusolverSpH, rowsA, colsA, d_b, d_x,
d_info, buffer_gpu));
checkCudaErrors(
cudaMemcpy(d_r, h_bcopy, sizeof(double) * rowsA, cudaMemcpyHostToDevice));
checkCudaErrors(cusparseSpMV(cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE,
&minus_one, matA, vecx, &one, vecAx, CUDA_R_64F,
CUSPARSE_SPMV_ALG_DEFAULT, buffer));
checkCudaErrors(
cudaMemcpy(h_r, d_r, sizeof(double) * rowsA, cudaMemcpyDeviceToHost));
r_inf = vec_norminf(rowsA, h_r);
printf("(GPU) |b - A*x| = %E \n", r_inf);
printf("(GPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf / (A_inf * x_inf));
if (cusolverSpH) {
checkCudaErrors(cusolverSpDestroy(cusolverSpH));
}
if (cusparseH) {
checkCudaErrors(cusparseDestroy(cusparseH));
}
if (stream) {
checkCudaErrors(cudaStreamDestroy(stream));
}
if (descrA) {
checkCudaErrors(cusparseDestroyMatDescr(descrA));
}
if (h_info) {
checkCudaErrors(cusolverSpDestroyCsrqrInfoHost(h_info));
}
if (d_info) {
checkCudaErrors(cusolverSpDestroyCsrqrInfo(d_info));
}
if (matA) {
checkCudaErrors(cusparseDestroySpMat(matA));
}
if (vecx) {
checkCudaErrors(cusparseDestroyDnVec(vecx));
}
if (vecAx) {
checkCudaErrors(cusparseDestroyDnVec(vecAx));
}
if (h_csrValA) {
free(h_csrValA);
}
if (h_csrRowPtrA) {
free(h_csrRowPtrA);
}
if (h_csrColIndA) {
free(h_csrColIndA);
}
if (h_x) {
free(h_x);
}
if (h_b) {
free(h_b);
}
if (h_bcopy) {
free(h_bcopy);
}
if (h_r) {
free(h_r);
}
if (buffer_cpu) {
free(buffer_cpu);
}
if (buffer_gpu) {
checkCudaErrors(cudaFree(buffer_gpu));
}
if (d_csrValA) {
checkCudaErrors(cudaFree(d_csrValA));
}
if (d_csrRowPtrA) {
checkCudaErrors(cudaFree(d_csrRowPtrA));
}
if (d_csrColIndA) {
checkCudaErrors(cudaFree(d_csrColIndA));
}
if (d_x) {
checkCudaErrors(cudaFree(d_x));
}
if (d_b) {
checkCudaErrors(cudaFree(d_b));
}
if (d_r) {
checkCudaErrors(cudaFree(d_r));
}
return 0;
}
|