1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cuda.h>
#include <nvJitLink.h>
#include <nvrtc.h>
#include <iostream>
#include <cstring>
#define NUM_THREADS 128
#define NUM_BLOCKS 32
#define NVRTC_SAFE_CALL(x) \
do { \
nvrtcResult result = x; \
if (result != NVRTC_SUCCESS) { \
std::cerr << "\nerror: " #x " failed with error " \
<< nvrtcGetErrorString(result) << '\n'; \
exit(1); \
} \
} while(0)
#define CUDA_SAFE_CALL(x) \
do { \
CUresult result = x; \
if (result != CUDA_SUCCESS) { \
const char *msg; \
cuGetErrorName(result, &msg); \
std::cerr << "\nerror: " #x " failed with error " \
<< msg << '\n'; \
exit(1); \
} \
} while(0)
#define NVJITLINK_SAFE_CALL(h,x) \
do { \
nvJitLinkResult result = x; \
if (result != NVJITLINK_SUCCESS) { \
std::cerr << "\nerror: " #x " failed with error " \
<< result << '\n'; \
size_t lsize; \
result = nvJitLinkGetErrorLogSize(h, &lsize); \
if (result == NVJITLINK_SUCCESS && lsize > 0) { \
char *log = (char*)malloc(lsize); \
result = nvJitLinkGetErrorLog(h, log); \
if (result == NVJITLINK_SUCCESS) { \
std::cerr << "error log: " << log << '\n'; \
free(log); \
} \
} \
exit(1); \
} \
} while(0)
const char *lto_saxpy = " \n\
extern __device__ float compute(float a, float x, float y); \n\
\n\
extern \"C\" __global__ \n\
void saxpy(float a, float *x, float *y, float *out, size_t n) \n\
{ \n\
size_t tid = blockIdx.x * blockDim.x + threadIdx.x; \n\
if (tid < n) { \n\
out[tid] = compute(a, x[tid], y[tid]); \n\
} \n\
} \n";
const char *lto_compute = " \n\
__device__ float compute(float a, float x, float y) { \n\
return a * x + y; \n\
} \n";
// compile code into LTOIR, returning the IR and its size
static void getLTOIR (const char *code, const char *name,
char **ltoIR, size_t *ltoIRSize)
{
// Create an instance of nvrtcProgram with the code string.
nvrtcProgram prog;
NVRTC_SAFE_CALL(
nvrtcCreateProgram(&prog, // prog
code, // buffer
name, // name
0, // numHeaders
NULL, // headers
NULL)); // includeNames
// specify that LTO IR should be generated for LTO operation
const char *opts[] = {"-dlto",
"--relocatable-device-code=true"};
nvrtcResult compileResult = nvrtcCompileProgram(prog, // prog
2, // numOptions
opts); // options
// Obtain compilation log from the program.
size_t logSize;
NVRTC_SAFE_CALL(nvrtcGetProgramLogSize(prog, &logSize));
char *log = new char[logSize];
NVRTC_SAFE_CALL(nvrtcGetProgramLog(prog, log));
std::cout << log << '\n';
delete[] log;
if (compileResult != NVRTC_SUCCESS) {
exit(1);
}
// Obtain generated LTO IR from the program.
NVRTC_SAFE_CALL(nvrtcGetLTOIRSize(prog, ltoIRSize));
*ltoIR = new char[*ltoIRSize];
NVRTC_SAFE_CALL(nvrtcGetLTOIR(prog, *ltoIR));
// Destroy the program.
NVRTC_SAFE_CALL(nvrtcDestroyProgram(&prog));
}
int main(int argc, char *argv[])
{
unsigned int cuda_major = 0;
unsigned int cuda_minor = 0;
nvJitLinkResult res = nvJitLinkVersion(&cuda_major, &cuda_minor);
if (res != NVJITLINK_SUCCESS) {
std::cerr << "Version check failed" << '\n';
} else {
std::cout << "CUDA " << cuda_major << "." << cuda_minor << '\n';
}
char *ltoIR1;
char *ltoIR2;
size_t ltoIR1Size;
size_t ltoIR2Size;
// getLTOIR uses nvrtc to get the LTOIR.
// We could also use nvcc offline with -dlto -fatbin
// to generate the IR, but using nvrtc keeps the build simpler.
getLTOIR(lto_saxpy, "lto_saxpy.cu", <oIR1, <oIR1Size);
getLTOIR(lto_compute, "lto_compute.cu", <oIR2, <oIR2Size);
CUdevice cuDevice;
CUcontext context;
CUmodule module;
CUfunction kernel;
CUDA_SAFE_CALL(cuInit(0));
CUDA_SAFE_CALL(cuDeviceGet(&cuDevice, 0));
CUDA_SAFE_CALL(cuCtxCreate(&context, 0, cuDevice));
// Dynamically determine the arch to link for
int major = 0;
int minor = 0;
CUDA_SAFE_CALL(cuDeviceGetAttribute(&major,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevice));
CUDA_SAFE_CALL(cuDeviceGetAttribute(&minor,
CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevice));
int arch = major*10 + minor;
char smbuf[16];
memset(smbuf,0,16);
sprintf(smbuf, "-arch=sm_%d", arch);
// Load the generated LTO IR and link them together
nvJitLinkHandle handle;
const char *lopts[] = {"-lto", smbuf};
NVJITLINK_SAFE_CALL(handle, nvJitLinkCreate(&handle, 2, lopts));
NVJITLINK_SAFE_CALL(handle, nvJitLinkAddData(handle, NVJITLINK_INPUT_LTOIR,
(void *)ltoIR1, ltoIR1Size, "lto_saxpy"));
NVJITLINK_SAFE_CALL(handle, nvJitLinkAddData(handle, NVJITLINK_INPUT_LTOIR,
(void *)ltoIR2, ltoIR2Size, "lto_compute"));
// The call to nvJitLinkComplete causes linker to link together the two
// LTO IR modules, do optimization on the linked LTO IR,
// and generate cubin from it.
NVJITLINK_SAFE_CALL(handle, nvJitLinkComplete(handle));
// check error log
size_t logSize;
NVJITLINK_SAFE_CALL(handle, nvJitLinkGetErrorLogSize(handle, &logSize));
if (logSize > 0) {
char *log = (char*)malloc(logSize+1);
NVJITLINK_SAFE_CALL(handle, nvJitLinkGetErrorLog(handle, log));
std::cout << "Error log: " << log << std::endl;
free(log);
}
// get linked cubin
size_t cubinSize;
NVJITLINK_SAFE_CALL(handle, nvJitLinkGetLinkedCubinSize(handle, &cubinSize));
void *cubin = malloc(cubinSize);
NVJITLINK_SAFE_CALL(handle, nvJitLinkGetLinkedCubin(handle, cubin));
NVJITLINK_SAFE_CALL(handle, nvJitLinkDestroy(&handle));
delete[] ltoIR1;
delete[] ltoIR2;
// cubin is linked, so now load it
CUDA_SAFE_CALL(cuModuleLoadData(&module, cubin));
CUDA_SAFE_CALL(cuModuleGetFunction(&kernel, module, "saxpy"));
// Generate input for execution, and create output buffers.
size_t n = NUM_THREADS * NUM_BLOCKS;
size_t bufferSize = n * sizeof(float);
float a = 5.1f;
float *hX = new float[n], *hY = new float[n], *hOut = new float[n];
for (size_t i = 0; i < n; ++i) {
hX[i] = static_cast<float>(i);
hY[i] = static_cast<float>(i * 2);
}
CUdeviceptr dX, dY, dOut;
CUDA_SAFE_CALL(cuMemAlloc(&dX, bufferSize));
CUDA_SAFE_CALL(cuMemAlloc(&dY, bufferSize));
CUDA_SAFE_CALL(cuMemAlloc(&dOut, bufferSize));
CUDA_SAFE_CALL(cuMemcpyHtoD(dX, hX, bufferSize));
CUDA_SAFE_CALL(cuMemcpyHtoD(dY, hY, bufferSize));
// Execute SAXPY.
void *args[] = { &a, &dX, &dY, &dOut, &n };
CUDA_SAFE_CALL(
cuLaunchKernel(kernel,
NUM_BLOCKS, 1, 1, // grid dim
NUM_THREADS, 1, 1, // block dim
0, NULL, // shared mem and stream
args, 0)); // arguments
CUDA_SAFE_CALL(cuCtxSynchronize());
// Retrieve and print output.
CUDA_SAFE_CALL(cuMemcpyDtoH(hOut, dOut, bufferSize));
for (size_t i = 0; i < n; ++i) {
std::cout << a << " * " << hX[i] << " + " << hY[i]
<< " = " << hOut[i] << '\n';
}
// check last value to verify
if (hOut[n-1] == 29074.5) {
std::cout << "PASSED!\n";
} else {
std::cout << "values not expected?\n";
}
// Release resources.
CUDA_SAFE_CALL(cuMemFree(dX));
CUDA_SAFE_CALL(cuMemFree(dY));
CUDA_SAFE_CALL(cuMemFree(dOut));
CUDA_SAFE_CALL(cuModuleUnload(module));
CUDA_SAFE_CALL(cuCtxDestroy(context));
free(cubin);
delete[] hX;
delete[] hY;
delete[] hOut;
return 0;
}
|