File: lineOfSight.cu

package info (click to toggle)
nvidia-cuda-samples 12.4.1~dfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 313,216 kB
  • sloc: cpp: 82,042; makefile: 53,971; xml: 15,381; ansic: 8,630; sh: 91; python: 74
file content (345 lines) | stat: -rw-r--r-- 12,895 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

// This sample is an implementation of a simple line-of-sight algorithm:
// Given a height map and a ray originating at some observation point,
// it computes all the points along the ray that are visible from the
// observation point.
// It is based on the description made in "Guy E. Blelloch.  Vector models
// for data-parallel computing. MIT Press, 1990" and uses open source CUDA
// Thrust Library

#ifdef _WIN32
#define NOMINMAX
#endif

// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>

// includes, project
#include <helper_functions.h>
#include <helper_cuda.h>
#include <helper_math.h>

// includes, library
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/scan.h>
#include <thrust/copy.h>

////////////////////////////////////////////////////////////////////////////////
// declaration, types

// Boolean
typedef unsigned char Bool;
enum { False = 0, True = 1 };

// 2D height field
struct HeightField {
  int width;
  float *height;
};

// Ray
struct Ray {
  float3 origin;
  float2 dir;
  int length;
  float oneOverLength;
};

////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
int runTest(int argc, char **argv);
__global__ void computeAngles_kernel(const Ray, float *, cudaTextureObject_t);
__global__ void computeVisibilities_kernel(const float *, const float *, int,
                                           Bool *);
void lineOfSight_gold(const HeightField, const Ray, Bool *);
__device__ __host__ float2 getLocation(const Ray, int);
__device__ __host__ float getAngle(const Ray, float2, float);

////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
  int res = runTest(argc, argv);

  if (res != 1) {
    printf("Test failed!\n");
    exit(EXIT_FAILURE);
  }

  printf("Test passed\n");
  exit(EXIT_SUCCESS);
}

////////////////////////////////////////////////////////////////////////////////
//! Run a line-of-sight test for CUDA
////////////////////////////////////////////////////////////////////////////////
int runTest(int argc, char **argv) {
  ////////////////////////////////////////////////////////////////////////////
  // Device initialization

  printf("[%s] - Starting...\n", argv[0]);

  // use command-line specified CUDA device, otherwise use device with highest
  // Gflops/s
  findCudaDevice(argc, (const char **)argv);

  ////////////////////////////////////////////////////////////////////////////
  // Timer

  // Create
  StopWatchInterface *timer;
  sdkCreateTimer(&timer);

  // Number of iterations to get accurate timing
  uint numIterations = 100;

  ////////////////////////////////////////////////////////////////////////////
  // Height field

  HeightField heightField;

  // Allocate in host memory
  int2 dim = make_int2(10000, 100);
  heightField.width = dim.x;
  thrust::host_vector<float> height(dim.x * dim.y);
  heightField.height = (float *)&height[0];

  //
  // Fill in with an arbitrary sine surface
  for (int x = 0; x < dim.x; ++x)
    for (int y = 0; y < dim.y; ++y) {
      float amp = 0.1f * (x + y);
      float period = 2.0f + amp;
      *(heightField.height + dim.x * y + x) =
          amp * (sinf(sqrtf((float)(x * x + y * y)) * 2.0f * 3.1416f / period) +
                 1.0f);
    }

  // Allocate CUDA array in device memory
  cudaChannelFormatDesc channelDesc =
      cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
  cudaArray *heightFieldArray;
  checkCudaErrors(
      cudaMallocArray(&heightFieldArray, &channelDesc, dim.x, dim.y));

  // Initialize device memory
  checkCudaErrors(cudaMemcpy2DToArray(
      heightFieldArray, 0, 0, heightField.height, dim.x * sizeof(float),
      dim.x * sizeof(float), dim.y, cudaMemcpyHostToDevice));

  cudaTextureObject_t heightFieldTex;
  cudaResourceDesc texRes;
  memset(&texRes, 0, sizeof(cudaResourceDesc));

  texRes.resType = cudaResourceTypeArray;
  texRes.res.array.array = heightFieldArray;

  cudaTextureDesc texDescr;
  memset(&texDescr, 0, sizeof(cudaTextureDesc));
  texDescr.normalizedCoords = false;
  texDescr.filterMode = cudaFilterModePoint;
  texDescr.addressMode[0] = cudaAddressModeClamp;
  texDescr.addressMode[1] = cudaAddressModeClamp;
  texDescr.readMode = cudaReadModeElementType;

  checkCudaErrors(
      cudaCreateTextureObject(&heightFieldTex, &texRes, &texDescr, NULL));

  //////////////////////////////////////////////////////////////////////////////
  // Ray (starts at origin and traverses the height field diagonally)

  Ray ray;
  ray.origin = make_float3(0, 0, 2.0f);
  int2 dir = make_int2(dim.x - 1, dim.y - 1);
  ray.dir = make_float2((float)dir.x, (float)dir.y);
  ray.length = max(abs(dir.x), abs(dir.y));
  ray.oneOverLength = 1.0f / ray.length;

  //////////////////////////////////////////////////////////////////////////////
  // View angles

  // Allocate view angles for each point along the ray
  thrust::device_vector<float> d_angles(ray.length);

  // Allocate result of max-scan operation on the array of view angles
  thrust::device_vector<float> d_scannedAngles(ray.length);

  //////////////////////////////////////////////////////////////////////////////
  // Visibility results

  // Allocate visibility results for each point along the ray
  thrust::device_vector<Bool> d_visibilities(ray.length);
  thrust::host_vector<Bool> h_visibilities(ray.length);
  thrust::host_vector<Bool> h_visibilitiesRef(ray.length);

  //////////////////////////////////////////////////////////////////////////////
  // Reference solution
  lineOfSight_gold(heightField, ray, (Bool *)&h_visibilitiesRef[0]);

  //////////////////////////////////////////////////////////////////////////////
  // Device solution

  // Execution configuration
  dim3 block(256);
  dim3 grid((uint)ceil(ray.length / (double)block.x));

  // Compute device solution
  printf("Line of sight\n");
  sdkStartTimer(&timer);

  for (uint i = 0; i < numIterations; ++i) {
    // Compute view angle for each point along the ray
    computeAngles_kernel<<<grid, block>>>(
        ray, thrust::raw_pointer_cast(&d_angles[0]), heightFieldTex);
    getLastCudaError("Kernel execution failed");

    // Perform a max-scan operation on the array of view angles
    thrust::inclusive_scan(d_angles.begin(), d_angles.end(),
                           d_scannedAngles.begin(), thrust::maximum<float>());
    getLastCudaError("Kernel execution failed");

    // Compute visibility results based on the array of view angles
    // and its scanned version
    computeVisibilities_kernel<<<grid, block>>>(
        thrust::raw_pointer_cast(&d_angles[0]),
        thrust::raw_pointer_cast(&d_scannedAngles[0]), ray.length,
        thrust::raw_pointer_cast(&d_visibilities[0]));
    getLastCudaError("Kernel execution failed");
  }

  cudaDeviceSynchronize();
  sdkStopTimer(&timer);
  getLastCudaError("Kernel execution failed");

  // Copy visibility results back to the host
  thrust::copy(d_visibilities.begin(), d_visibilities.end(),
               h_visibilities.begin());

  // Compare device visibility results against reference results
  bool res = compareData(thrust::raw_pointer_cast(&h_visibilitiesRef[0]),
                         thrust::raw_pointer_cast(&h_visibilities[0]),
                         ray.length, 0.0f, 0.0f);
  printf("Average time: %f ms\n\n", sdkGetTimerValue(&timer) / numIterations);
  sdkResetTimer(&timer);

  // Cleanup memory
  checkCudaErrors(cudaFreeArray(heightFieldArray));
  return res;
}

////////////////////////////////////////////////////////////////////////////////
//! Compute view angles for each point along the ray
//! @param ray         ray
//! @param angles      view angles
////////////////////////////////////////////////////////////////////////////////
__global__ void computeAngles_kernel(const Ray ray, float *angles,
                                     cudaTextureObject_t HeightFieldTex) {
  uint i = blockDim.x * blockIdx.x + threadIdx.x;

  if (i < ray.length) {
    float2 location = getLocation(ray, i + 1);
    float height = tex2D<float>(HeightFieldTex, location.x, location.y);
    float angle = getAngle(ray, location, height);
    angles[i] = angle;
  }
}

////////////////////////////////////////////////////////////////////////////////
//! Compute visibility for each point along the ray
//! @param angles          view angles
//! @param scannedAngles   max-scanned view angles
//! @param numAngles       number of view angles
//! @param visibilities    boolean array indicating the visibility of each point
//!                        along the ray
////////////////////////////////////////////////////////////////////////////////
__global__ void computeVisibilities_kernel(const float *angles,
                                           const float *scannedAngles,
                                           int numAngles, Bool *visibilities) {
  uint i = blockDim.x * blockIdx.x + threadIdx.x;

  if (i < numAngles) {
    visibilities[i] = scannedAngles[i] <= angles[i];
  }
}

////////////////////////////////////////////////////////////////////////////////
//! Compute reference data set
//! @param heightField     height field
//! @param ray             ray
//! @param visibilities    boolean array indicating the visibility of each point
//!                        along the ray
////////////////////////////////////////////////////////////////////////////////
void lineOfSight_gold(const HeightField heightField, const Ray ray,
                      Bool *visibilities) {
  float angleMax = asinf(-1.0f);

  for (int i = 0; i < ray.length; ++i) {
    float2 location = getLocation(ray, i + 1);
    float height =
        *(heightField.height + heightField.width * (int)floorf(location.y) +
          (int)floorf(location.x));
    float angle = getAngle(ray, location, height);

    if (angle > angleMax) {
      angleMax = angle;
      visibilities[i] = True;
    } else {
      visibilities[i] = False;
    }
  }
}

////////////////////////////////////////////////////////////////////////////////
//! Compute the 2D coordinates of the point located at i steps from the origin
//! of the ray
//! @param ray      ray
//! @param i        integer offset along the ray
////////////////////////////////////////////////////////////////////////////////
__device__ __host__ float2 getLocation(const Ray ray, int i) {
  float step = i * ray.oneOverLength;
  return make_float2(ray.origin.x, ray.origin.y) + ray.dir * step;
}

////////////////////////////////////////////////////////////////////////////////
//! Compute the angle of view between a 3D point and the origin of the ray
//! @param ray        ray
//! @param location   2D coordinates of the input point
//! @param height     height of the input point
////////////////////////////////////////////////////////////////////////////////
__device__ __host__ float getAngle(const Ray ray, float2 location,
                                   float height) {
  float2 dir = location - make_float2(ray.origin.x, ray.origin.y);
  return atanf((height - ray.origin.z) / length(dir));
}