1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// This sample is an implementation of a simple line-of-sight algorithm:
// Given a height map and a ray originating at some observation point,
// it computes all the points along the ray that are visible from the
// observation point.
// It is based on the description made in "Guy E. Blelloch. Vector models
// for data-parallel computing. MIT Press, 1990" and uses open source CUDA
// Thrust Library
#ifdef _WIN32
#define NOMINMAX
#endif
// includes, system
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <float.h>
// includes, project
#include <helper_functions.h>
#include <helper_cuda.h>
#include <helper_math.h>
// includes, library
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/scan.h>
#include <thrust/copy.h>
////////////////////////////////////////////////////////////////////////////////
// declaration, types
// Boolean
typedef unsigned char Bool;
enum { False = 0, True = 1 };
// 2D height field
struct HeightField {
int width;
float *height;
};
// Ray
struct Ray {
float3 origin;
float2 dir;
int length;
float oneOverLength;
};
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
int runTest(int argc, char **argv);
__global__ void computeAngles_kernel(const Ray, float *, cudaTextureObject_t);
__global__ void computeVisibilities_kernel(const float *, const float *, int,
Bool *);
void lineOfSight_gold(const HeightField, const Ray, Bool *);
__device__ __host__ float2 getLocation(const Ray, int);
__device__ __host__ float getAngle(const Ray, float2, float);
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
int res = runTest(argc, argv);
if (res != 1) {
printf("Test failed!\n");
exit(EXIT_FAILURE);
}
printf("Test passed\n");
exit(EXIT_SUCCESS);
}
////////////////////////////////////////////////////////////////////////////////
//! Run a line-of-sight test for CUDA
////////////////////////////////////////////////////////////////////////////////
int runTest(int argc, char **argv) {
////////////////////////////////////////////////////////////////////////////
// Device initialization
printf("[%s] - Starting...\n", argv[0]);
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
findCudaDevice(argc, (const char **)argv);
////////////////////////////////////////////////////////////////////////////
// Timer
// Create
StopWatchInterface *timer;
sdkCreateTimer(&timer);
// Number of iterations to get accurate timing
uint numIterations = 100;
////////////////////////////////////////////////////////////////////////////
// Height field
HeightField heightField;
// Allocate in host memory
int2 dim = make_int2(10000, 100);
heightField.width = dim.x;
thrust::host_vector<float> height(dim.x * dim.y);
heightField.height = (float *)&height[0];
//
// Fill in with an arbitrary sine surface
for (int x = 0; x < dim.x; ++x)
for (int y = 0; y < dim.y; ++y) {
float amp = 0.1f * (x + y);
float period = 2.0f + amp;
*(heightField.height + dim.x * y + x) =
amp * (sinf(sqrtf((float)(x * x + y * y)) * 2.0f * 3.1416f / period) +
1.0f);
}
// Allocate CUDA array in device memory
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
cudaArray *heightFieldArray;
checkCudaErrors(
cudaMallocArray(&heightFieldArray, &channelDesc, dim.x, dim.y));
// Initialize device memory
checkCudaErrors(cudaMemcpy2DToArray(
heightFieldArray, 0, 0, heightField.height, dim.x * sizeof(float),
dim.x * sizeof(float), dim.y, cudaMemcpyHostToDevice));
cudaTextureObject_t heightFieldTex;
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = heightFieldArray;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = false;
texDescr.filterMode = cudaFilterModePoint;
texDescr.addressMode[0] = cudaAddressModeClamp;
texDescr.addressMode[1] = cudaAddressModeClamp;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(
cudaCreateTextureObject(&heightFieldTex, &texRes, &texDescr, NULL));
//////////////////////////////////////////////////////////////////////////////
// Ray (starts at origin and traverses the height field diagonally)
Ray ray;
ray.origin = make_float3(0, 0, 2.0f);
int2 dir = make_int2(dim.x - 1, dim.y - 1);
ray.dir = make_float2((float)dir.x, (float)dir.y);
ray.length = max(abs(dir.x), abs(dir.y));
ray.oneOverLength = 1.0f / ray.length;
//////////////////////////////////////////////////////////////////////////////
// View angles
// Allocate view angles for each point along the ray
thrust::device_vector<float> d_angles(ray.length);
// Allocate result of max-scan operation on the array of view angles
thrust::device_vector<float> d_scannedAngles(ray.length);
//////////////////////////////////////////////////////////////////////////////
// Visibility results
// Allocate visibility results for each point along the ray
thrust::device_vector<Bool> d_visibilities(ray.length);
thrust::host_vector<Bool> h_visibilities(ray.length);
thrust::host_vector<Bool> h_visibilitiesRef(ray.length);
//////////////////////////////////////////////////////////////////////////////
// Reference solution
lineOfSight_gold(heightField, ray, (Bool *)&h_visibilitiesRef[0]);
//////////////////////////////////////////////////////////////////////////////
// Device solution
// Execution configuration
dim3 block(256);
dim3 grid((uint)ceil(ray.length / (double)block.x));
// Compute device solution
printf("Line of sight\n");
sdkStartTimer(&timer);
for (uint i = 0; i < numIterations; ++i) {
// Compute view angle for each point along the ray
computeAngles_kernel<<<grid, block>>>(
ray, thrust::raw_pointer_cast(&d_angles[0]), heightFieldTex);
getLastCudaError("Kernel execution failed");
// Perform a max-scan operation on the array of view angles
thrust::inclusive_scan(d_angles.begin(), d_angles.end(),
d_scannedAngles.begin(), thrust::maximum<float>());
getLastCudaError("Kernel execution failed");
// Compute visibility results based on the array of view angles
// and its scanned version
computeVisibilities_kernel<<<grid, block>>>(
thrust::raw_pointer_cast(&d_angles[0]),
thrust::raw_pointer_cast(&d_scannedAngles[0]), ray.length,
thrust::raw_pointer_cast(&d_visibilities[0]));
getLastCudaError("Kernel execution failed");
}
cudaDeviceSynchronize();
sdkStopTimer(&timer);
getLastCudaError("Kernel execution failed");
// Copy visibility results back to the host
thrust::copy(d_visibilities.begin(), d_visibilities.end(),
h_visibilities.begin());
// Compare device visibility results against reference results
bool res = compareData(thrust::raw_pointer_cast(&h_visibilitiesRef[0]),
thrust::raw_pointer_cast(&h_visibilities[0]),
ray.length, 0.0f, 0.0f);
printf("Average time: %f ms\n\n", sdkGetTimerValue(&timer) / numIterations);
sdkResetTimer(&timer);
// Cleanup memory
checkCudaErrors(cudaFreeArray(heightFieldArray));
return res;
}
////////////////////////////////////////////////////////////////////////////////
//! Compute view angles for each point along the ray
//! @param ray ray
//! @param angles view angles
////////////////////////////////////////////////////////////////////////////////
__global__ void computeAngles_kernel(const Ray ray, float *angles,
cudaTextureObject_t HeightFieldTex) {
uint i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < ray.length) {
float2 location = getLocation(ray, i + 1);
float height = tex2D<float>(HeightFieldTex, location.x, location.y);
float angle = getAngle(ray, location, height);
angles[i] = angle;
}
}
////////////////////////////////////////////////////////////////////////////////
//! Compute visibility for each point along the ray
//! @param angles view angles
//! @param scannedAngles max-scanned view angles
//! @param numAngles number of view angles
//! @param visibilities boolean array indicating the visibility of each point
//! along the ray
////////////////////////////////////////////////////////////////////////////////
__global__ void computeVisibilities_kernel(const float *angles,
const float *scannedAngles,
int numAngles, Bool *visibilities) {
uint i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < numAngles) {
visibilities[i] = scannedAngles[i] <= angles[i];
}
}
////////////////////////////////////////////////////////////////////////////////
//! Compute reference data set
//! @param heightField height field
//! @param ray ray
//! @param visibilities boolean array indicating the visibility of each point
//! along the ray
////////////////////////////////////////////////////////////////////////////////
void lineOfSight_gold(const HeightField heightField, const Ray ray,
Bool *visibilities) {
float angleMax = asinf(-1.0f);
for (int i = 0; i < ray.length; ++i) {
float2 location = getLocation(ray, i + 1);
float height =
*(heightField.height + heightField.width * (int)floorf(location.y) +
(int)floorf(location.x));
float angle = getAngle(ray, location, height);
if (angle > angleMax) {
angleMax = angle;
visibilities[i] = True;
} else {
visibilities[i] = False;
}
}
}
////////////////////////////////////////////////////////////////////////////////
//! Compute the 2D coordinates of the point located at i steps from the origin
//! of the ray
//! @param ray ray
//! @param i integer offset along the ray
////////////////////////////////////////////////////////////////////////////////
__device__ __host__ float2 getLocation(const Ray ray, int i) {
float step = i * ray.oneOverLength;
return make_float2(ray.origin.x, ray.origin.y) + ray.dir * step;
}
////////////////////////////////////////////////////////////////////////////////
//! Compute the angle of view between a 3D point and the origin of the ray
//! @param ray ray
//! @param location 2D coordinates of the input point
//! @param height height of the input point
////////////////////////////////////////////////////////////////////////////////
__device__ __host__ float getAngle(const Ray ray, float2 location,
float height) {
float2 dir = location - make_float2(ray.origin.x, ray.origin.y);
return atanf((height - ray.origin.z) / length(dir));
}
|