1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Matrix multiplication: C = A * B.
* Host code.
*
* This sample implements matrix multiplication as described in Chapter 3
* of the programming guide and uses the CUBLAS library to demonstrate
* the best performance.
* SOME PRECAUTIONS:
* IF WE WANT TO CALCULATE ROW-MAJOR MATRIX MULTIPLY C = A * B,
* WE JUST NEED CALL CUBLAS API IN A REVERSE ORDER: cublasSegemm(B, A)!
* The reason is explained as follows:
* CUBLAS library uses column-major storage, but C/C++ use row-major storage.
* When passing the matrix pointer to CUBLAS, the memory layout alters from
* row-major to column-major, which is equivalent to an implicit transpose.
* In the case of row-major C/C++ matrix A, B, and a simple matrix multiplication
* C = A * B, we can't use the input order like cublasSgemm(A, B) because of
* implicit transpose. The actual result of cublasSegemm(A, B) is A(T) * B(T).
* If col(A(T)) != row(B(T)), equal to row(A) != col(B), A(T) and B(T) are not
* multipliable. Moreover, even if A(T) and B(T) are multipliable, the result C
* is a column-based cublas matrix, which means C(T) in C/C++, we need extra
* transpose code to convert it to a row-based C/C++ matrix.
* To solve the problem, let's consider our desired result C, a row-major matrix.
* In cublas format, it is C(T) actually (because of the implicit transpose).
* C = A * B, so C(T) = (A * B) (T) = B(T) * A(T). Cublas matrice B(T) and A(T)
* happen to be C/C++ matrice B and A (still because of the implicit transpose)!
* We don't need extra transpose code, we only need alter the input order!
*
* CUBLAS provides high-performance matrix multiplication.
* See also:
* V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra,"
* in Proc. 2008 ACM/IEEE Conf. on Supercomputing (SC '08),
* Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11.
*/
// Utilities and system includes
#include <assert.h>
#include <helper_string.h> // helper for shared functions common to CUDA Samples
// CUDA runtime
#include <cuda_runtime.h>
#include <cublas_v2.h>
// CUDA and CUBLAS functions
#include <helper_functions.h>
#include <helper_cuda.h>
#ifndef min
#define min(a, b) ((a < b) ? a : b)
#endif
#ifndef max
#define max(a, b) ((a > b) ? a : b)
#endif
// Optional Command-line multiplier for matrix sizes
typedef struct _matrixSize {
unsigned int uiWA, uiHA, uiWB, uiHB, uiWC, uiHC;
} sMatrixSize;
////////////////////////////////////////////////////////////////////////////////
//! Compute reference data set matrix multiply on CPU
//! C = A * B
//! @param C reference data, computed but preallocated
//! @param A matrix A as provided to device
//! @param B matrix B as provided to device
//! @param hA height of matrix A
//! @param wB width of matrix B
////////////////////////////////////////////////////////////////////////////////
void matrixMulCPU(float *C, const float *A, const float *B, unsigned int hA,
unsigned int wA, unsigned int wB) {
for (unsigned int i = 0; i < hA; ++i)
for (unsigned int j = 0; j < wB; ++j) {
double sum = 0;
for (unsigned int k = 0; k < wA; ++k) {
double a = A[i * wA + k];
double b = B[k * wB + j];
sum += a * b;
}
C[i * wB + j] = (float)sum;
}
}
// Allocates a matrix with random float entries.
void randomInit(float *data, int size) {
for (int i = 0; i < size; ++i) data[i] = rand() / (float)RAND_MAX;
}
void printDiff(float *data1, float *data2, int width, int height,
int iListLength, float fListTol) {
printf("Listing first %d Differences > %.6f...\n", iListLength, fListTol);
int i, j, k;
int error_count = 0;
for (j = 0; j < height; j++) {
if (error_count < iListLength) {
printf("\n Row %d:\n", j);
}
for (i = 0; i < width; i++) {
k = j * width + i;
float fDiff = fabs(data1[k] - data2[k]);
if (fDiff > fListTol) {
if (error_count < iListLength) {
printf(" Loc(%d,%d)\tCPU=%.5f\tGPU=%.5f\tDiff=%.6f\n", i, j,
data1[k], data2[k], fDiff);
}
error_count++;
}
}
}
printf(" \n Total Errors = %d\n", error_count);
}
void initializeCUDA(int argc, char **argv, int &devID, int &iSizeMultiple,
sMatrixSize &matrix_size) {
// By default, we use device 0, otherwise we override the device ID based on
// what is provided at the command line
cudaError_t error;
devID = 0;
devID = findCudaDevice(argc, (const char **)argv);
if (checkCmdLineFlag(argc, (const char **)argv, "sizemult")) {
iSizeMultiple =
getCmdLineArgumentInt(argc, (const char **)argv, "sizemult");
}
iSizeMultiple = min(iSizeMultiple, 10);
iSizeMultiple = max(iSizeMultiple, 1);
cudaDeviceProp deviceProp;
error = cudaGetDeviceProperties(&deviceProp, devID);
if (error != cudaSuccess) {
printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error,
__LINE__);
exit(EXIT_FAILURE);
}
printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID,
deviceProp.name, deviceProp.major, deviceProp.minor);
int block_size = 32;
matrix_size.uiWA = 3 * block_size * iSizeMultiple;
matrix_size.uiHA = 4 * block_size * iSizeMultiple;
matrix_size.uiWB = 2 * block_size * iSizeMultiple;
matrix_size.uiHB = 3 * block_size * iSizeMultiple;
matrix_size.uiWC = 2 * block_size * iSizeMultiple;
matrix_size.uiHC = 4 * block_size * iSizeMultiple;
printf("MatrixA(%u,%u), MatrixB(%u,%u), MatrixC(%u,%u)\n", matrix_size.uiHA,
matrix_size.uiWA, matrix_size.uiHB, matrix_size.uiWB, matrix_size.uiHC,
matrix_size.uiWC);
if (matrix_size.uiWA != matrix_size.uiHB ||
matrix_size.uiHA != matrix_size.uiHC ||
matrix_size.uiWB != matrix_size.uiWC) {
printf("ERROR: Matrix sizes do not match!\n");
exit(-1);
}
}
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test matrix multiply using CUBLAS
////////////////////////////////////////////////////////////////////////////////
int matrixMultiply(int argc, char **argv, int devID, sMatrixSize &matrix_size) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
int block_size = 32;
// set seed for rand()
srand(2006);
// allocate host memory for matrices A and B
unsigned int size_A = matrix_size.uiWA * matrix_size.uiHA;
unsigned int mem_size_A = sizeof(float) * size_A;
float *h_A = (float *)malloc(mem_size_A);
unsigned int size_B = matrix_size.uiWB * matrix_size.uiHB;
unsigned int mem_size_B = sizeof(float) * size_B;
float *h_B = (float *)malloc(mem_size_B);
// set seed for rand()
srand(2006);
// initialize host memory
randomInit(h_A, size_A);
randomInit(h_B, size_B);
// allocate device memory
float *d_A, *d_B, *d_C;
unsigned int size_C = matrix_size.uiWC * matrix_size.uiHC;
unsigned int mem_size_C = sizeof(float) * size_C;
// allocate host memory for the result
float *h_C = (float *)malloc(mem_size_C);
float *h_CUBLAS = (float *)malloc(mem_size_C);
checkCudaErrors(cudaMalloc((void **)&d_A, mem_size_A));
checkCudaErrors(cudaMalloc((void **)&d_B, mem_size_B));
checkCudaErrors(cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMalloc((void **)&d_C, mem_size_C));
// setup execution parameters
dim3 threads(block_size, block_size);
dim3 grid(matrix_size.uiWC / threads.x, matrix_size.uiHC / threads.y);
// create and start timer
printf("Computing result using CUBLAS...");
// execute the kernel
int nIter = 30;
// CUBLAS version 2.0
{
const float alpha = 1.0f;
const float beta = 0.0f;
cublasHandle_t handle;
cudaEvent_t start, stop;
checkCudaErrors(cublasCreate(&handle));
// Perform warmup operation with cublas
checkCudaErrors(cublasSgemm(
handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiWB, matrix_size.uiHA,
matrix_size.uiWA, &alpha, d_B, matrix_size.uiWB, d_A, matrix_size.uiWA,
&beta, d_C, matrix_size.uiWB));
// Allocate CUDA events that we'll use for timing
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
// Record the start event
checkCudaErrors(cudaEventRecord(start, NULL));
for (int j = 0; j < nIter; j++) {
// note cublas is column primary!
// need to transpose the order
checkCudaErrors(cublasSgemm(
handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiWB, matrix_size.uiHA,
matrix_size.uiWA, &alpha, d_B, matrix_size.uiWB, d_A,
matrix_size.uiWA, &beta, d_C, matrix_size.uiWB));
}
printf("done.\n");
// Record the stop event
checkCudaErrors(cudaEventRecord(stop, NULL));
// Wait for the stop event to complete
checkCudaErrors(cudaEventSynchronize(stop));
float msecTotal = 0.0f;
checkCudaErrors(cudaEventElapsedTime(&msecTotal, start, stop));
// Compute and print the performance
float msecPerMatrixMul = msecTotal / nIter;
double flopsPerMatrixMul = 2.0 * (double)matrix_size.uiHC *
(double)matrix_size.uiWC *
(double)matrix_size.uiHB;
double gigaFlops =
(flopsPerMatrixMul * 1.0e-9f) / (msecPerMatrixMul / 1000.0f);
printf("Performance= %.2f GFlop/s, Time= %.3f msec, Size= %.0f Ops\n",
gigaFlops, msecPerMatrixMul, flopsPerMatrixMul);
// copy result from device to host
checkCudaErrors(
cudaMemcpy(h_CUBLAS, d_C, mem_size_C, cudaMemcpyDeviceToHost));
// Destroy the handle
checkCudaErrors(cublasDestroy(handle));
}
// compute reference solution
printf("Computing result using host CPU...");
float *reference = (float *)malloc(mem_size_C);
matrixMulCPU(reference, h_A, h_B, matrix_size.uiHA, matrix_size.uiWA,
matrix_size.uiWB);
printf("done.\n");
// check result (CUBLAS)
bool resCUBLAS = sdkCompareL2fe(reference, h_CUBLAS, size_C, 1.0e-6f);
if (resCUBLAS != true) {
printDiff(reference, h_CUBLAS, matrix_size.uiWC, matrix_size.uiHC, 100,
1.0e-5f);
}
printf("Comparing CUBLAS Matrix Multiply with CPU results: %s\n",
(true == resCUBLAS) ? "PASS" : "FAIL");
printf(
"\nNOTE: The CUDA Samples are not meant for performance measurements. "
"Results may vary when GPU Boost is enabled.\n");
// clean up memory
free(h_A);
free(h_B);
free(h_C);
free(reference);
checkCudaErrors(cudaFree(d_A));
checkCudaErrors(cudaFree(d_B));
checkCudaErrors(cudaFree(d_C));
if (resCUBLAS == true) {
return EXIT_SUCCESS; // return value = 1
} else {
return EXIT_FAILURE; // return value = 0
}
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf("[Matrix Multiply CUBLAS] - Starting...\n");
int devID = 0, sizeMult = 5;
sMatrixSize matrix_size;
initializeCUDA(argc, argv, devID, sizeMult, matrix_size);
int matrix_result = matrixMultiply(argc, argv, devID, matrix_size);
return matrix_result;
}
|