1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// This sample needs at least CUDA 10.0. It demonstrates usages of the nvJPEG
// library nvJPEG supports single and multiple image(batched) decode. Multiple
// images can be decoded using the API for batch mode
#include <cuda_runtime_api.h>
#include "helper_nvJPEG.hxx"
int dev_malloc(void **p, size_t s) { return (int)cudaMalloc(p, s); }
int dev_free(void *p) { return (int)cudaFree(p); }
int host_malloc(void** p, size_t s, unsigned int f) { return (int)cudaHostAlloc(p, s, f); }
int host_free(void* p) { return (int)cudaFreeHost(p); }
typedef std::vector<std::string> FileNames;
typedef std::vector<std::vector<char> > FileData;
struct decode_params_t {
std::string input_dir;
int batch_size;
int total_images;
int dev;
int warmup;
nvjpegJpegState_t nvjpeg_state;
nvjpegHandle_t nvjpeg_handle;
cudaStream_t stream;
// used with decoupled API
nvjpegJpegState_t nvjpeg_decoupled_state;
nvjpegBufferPinned_t pinned_buffers[2]; // 2 buffers for pipelining
nvjpegBufferDevice_t device_buffer;
nvjpegJpegStream_t jpeg_streams[2]; // 2 streams for pipelining
nvjpegDecodeParams_t nvjpeg_decode_params;
nvjpegJpegDecoder_t nvjpeg_decoder;
nvjpegOutputFormat_t fmt;
bool write_decoded;
std::string output_dir;
bool pipelined;
bool batched;
};
int read_next_batch(FileNames &image_names, int batch_size,
FileNames::iterator &cur_iter, FileData &raw_data,
std::vector<size_t> &raw_len, FileNames ¤t_names) {
int counter = 0;
while (counter < batch_size) {
if (cur_iter == image_names.end()) {
std::cerr << "Image list is too short to fill the batch, adding files "
"from the beginning of the image list"
<< std::endl;
cur_iter = image_names.begin();
}
if (image_names.size() == 0) {
std::cerr << "No valid images left in the input list, exit" << std::endl;
return EXIT_FAILURE;
}
// Read an image from disk.
std::ifstream input(cur_iter->c_str(),
std::ios::in | std::ios::binary | std::ios::ate);
if (!(input.is_open())) {
std::cerr << "Cannot open image: " << *cur_iter
<< ", removing it from image list" << std::endl;
image_names.erase(cur_iter);
continue;
}
// Get the size
std::streamsize file_size = input.tellg();
input.seekg(0, std::ios::beg);
// resize if buffer is too small
if (raw_data[counter].size() < file_size) {
raw_data[counter].resize(file_size);
}
if (!input.read(raw_data[counter].data(), file_size)) {
std::cerr << "Cannot read from file: " << *cur_iter
<< ", removing it from image list" << std::endl;
image_names.erase(cur_iter);
continue;
}
raw_len[counter] = file_size;
current_names[counter] = *cur_iter;
counter++;
cur_iter++;
}
return EXIT_SUCCESS;
}
// prepare buffers for RGBi output format
int prepare_buffers(FileData &file_data, std::vector<size_t> &file_len,
std::vector<int> &img_width, std::vector<int> &img_height,
std::vector<nvjpegImage_t> &ibuf,
std::vector<nvjpegImage_t> &isz, FileNames ¤t_names,
decode_params_t ¶ms) {
int widths[NVJPEG_MAX_COMPONENT];
int heights[NVJPEG_MAX_COMPONENT];
int channels;
nvjpegChromaSubsampling_t subsampling;
for (int i = 0; i < file_data.size(); i++) {
checkCudaErrors(nvjpegGetImageInfo(
params.nvjpeg_handle, (unsigned char *)file_data[i].data(), file_len[i],
&channels, &subsampling, widths, heights));
img_width[i] = widths[0];
img_height[i] = heights[0];
std::cout << "Processing: " << current_names[i] << std::endl;
std::cout << "Image is " << channels << " channels." << std::endl;
for (int c = 0; c < channels; c++) {
std::cout << "Channel #" << c << " size: " << widths[c] << " x "
<< heights[c] << std::endl;
}
switch (subsampling) {
case NVJPEG_CSS_444:
std::cout << "YUV 4:4:4 chroma subsampling" << std::endl;
break;
case NVJPEG_CSS_440:
std::cout << "YUV 4:4:0 chroma subsampling" << std::endl;
break;
case NVJPEG_CSS_422:
std::cout << "YUV 4:2:2 chroma subsampling" << std::endl;
break;
case NVJPEG_CSS_420:
std::cout << "YUV 4:2:0 chroma subsampling" << std::endl;
break;
case NVJPEG_CSS_411:
std::cout << "YUV 4:1:1 chroma subsampling" << std::endl;
break;
case NVJPEG_CSS_410:
std::cout << "YUV 4:1:0 chroma subsampling" << std::endl;
break;
case NVJPEG_CSS_GRAY:
std::cout << "Grayscale JPEG " << std::endl;
break;
case NVJPEG_CSS_UNKNOWN:
std::cout << "Unknown chroma subsampling" << std::endl;
return EXIT_FAILURE;
}
int mul = 1;
// in the case of interleaved RGB output, write only to single channel, but
// 3 samples at once
if (params.fmt == NVJPEG_OUTPUT_RGBI || params.fmt == NVJPEG_OUTPUT_BGRI) {
channels = 1;
mul = 3;
}
// in the case of rgb create 3 buffers with sizes of original image
else if (params.fmt == NVJPEG_OUTPUT_RGB ||
params.fmt == NVJPEG_OUTPUT_BGR) {
channels = 3;
widths[1] = widths[2] = widths[0];
heights[1] = heights[2] = heights[0];
}
// realloc output buffer if required
for (int c = 0; c < channels; c++) {
int aw = mul * widths[c];
int ah = heights[c];
int sz = aw * ah;
ibuf[i].pitch[c] = aw;
if (sz > isz[i].pitch[c]) {
if (ibuf[i].channel[c]) {
checkCudaErrors(cudaFree(ibuf[i].channel[c]));
}
checkCudaErrors(cudaMalloc(&ibuf[i].channel[c], sz));
isz[i].pitch[c] = sz;
}
}
}
return EXIT_SUCCESS;
}
void create_decoupled_api_handles(decode_params_t& params){
checkCudaErrors(nvjpegDecoderCreate(params.nvjpeg_handle, NVJPEG_BACKEND_DEFAULT, ¶ms.nvjpeg_decoder));
checkCudaErrors(nvjpegDecoderStateCreate(params.nvjpeg_handle, params.nvjpeg_decoder, ¶ms.nvjpeg_decoupled_state));
checkCudaErrors(nvjpegBufferPinnedCreate(params.nvjpeg_handle, NULL, ¶ms.pinned_buffers[0]));
checkCudaErrors(nvjpegBufferPinnedCreate(params.nvjpeg_handle, NULL, ¶ms.pinned_buffers[1]));
checkCudaErrors(nvjpegBufferDeviceCreate(params.nvjpeg_handle, NULL, ¶ms.device_buffer));
checkCudaErrors(nvjpegJpegStreamCreate(params.nvjpeg_handle, ¶ms.jpeg_streams[0]));
checkCudaErrors(nvjpegJpegStreamCreate(params.nvjpeg_handle, ¶ms.jpeg_streams[1]));
checkCudaErrors(nvjpegDecodeParamsCreate(params.nvjpeg_handle, ¶ms.nvjpeg_decode_params));
}
void destroy_decoupled_api_handles(decode_params_t& params){
checkCudaErrors(nvjpegDecodeParamsDestroy(params.nvjpeg_decode_params));
checkCudaErrors(nvjpegJpegStreamDestroy(params.jpeg_streams[0]));
checkCudaErrors(nvjpegJpegStreamDestroy(params.jpeg_streams[1]));
checkCudaErrors(nvjpegBufferPinnedDestroy(params.pinned_buffers[0]));
checkCudaErrors(nvjpegBufferPinnedDestroy(params.pinned_buffers[1]));
checkCudaErrors(nvjpegBufferDeviceDestroy(params.device_buffer));
checkCudaErrors(nvjpegJpegStateDestroy(params.nvjpeg_decoupled_state));
checkCudaErrors(nvjpegDecoderDestroy(params.nvjpeg_decoder));
}
void release_buffers(std::vector<nvjpegImage_t> &ibuf) {
for (int i = 0; i < ibuf.size(); i++) {
for (int c = 0; c < NVJPEG_MAX_COMPONENT; c++)
if (ibuf[i].channel[c]) checkCudaErrors(cudaFree(ibuf[i].channel[c]));
}
}
int decode_images(const FileData &img_data, const std::vector<size_t> &img_len,
std::vector<nvjpegImage_t> &out, decode_params_t ¶ms,
double &time) {
checkCudaErrors(cudaStreamSynchronize(params.stream));
cudaEvent_t startEvent = NULL, stopEvent = NULL;
float loopTime = 0;
checkCudaErrors(cudaEventCreate(&startEvent, cudaEventBlockingSync));
checkCudaErrors(cudaEventCreate(&stopEvent, cudaEventBlockingSync));
if (!params.batched) {
if (!params.pipelined) // decode one image at a time
{
checkCudaErrors(cudaEventRecord(startEvent, params.stream));
for (int i = 0; i < params.batch_size; i++) {
checkCudaErrors(nvjpegDecode(params.nvjpeg_handle, params.nvjpeg_state,
(const unsigned char *)img_data[i].data(),
img_len[i], params.fmt, &out[i],
params.stream));
}
checkCudaErrors(cudaEventRecord(stopEvent, params.stream));
} else {
// use de-coupled API in pipelined mode
checkCudaErrors(cudaEventRecord(startEvent, params.stream));
checkCudaErrors(nvjpegStateAttachDeviceBuffer(params.nvjpeg_decoupled_state, params.device_buffer));
int buffer_index = 0;
checkCudaErrors(nvjpegDecodeParamsSetOutputFormat(params.nvjpeg_decode_params, params.fmt));
for (int i = 0; i < params.batch_size; i++) {
checkCudaErrors(
nvjpegJpegStreamParse(params.nvjpeg_handle, (const unsigned char *)img_data[i].data(), img_len[i],
0, 0, params.jpeg_streams[buffer_index]));
checkCudaErrors(nvjpegStateAttachPinnedBuffer(params.nvjpeg_decoupled_state,
params.pinned_buffers[buffer_index]));
checkCudaErrors(nvjpegDecodeJpegHost(params.nvjpeg_handle, params.nvjpeg_decoder, params.nvjpeg_decoupled_state,
params.nvjpeg_decode_params, params.jpeg_streams[buffer_index]));
checkCudaErrors(cudaStreamSynchronize(params.stream));
checkCudaErrors(nvjpegDecodeJpegTransferToDevice(params.nvjpeg_handle, params.nvjpeg_decoder, params.nvjpeg_decoupled_state,
params.jpeg_streams[buffer_index], params.stream));
buffer_index = 1 - buffer_index; // switch pinned buffer in pipeline mode to avoid an extra sync
checkCudaErrors(nvjpegDecodeJpegDevice(params.nvjpeg_handle, params.nvjpeg_decoder, params.nvjpeg_decoupled_state,
&out[i], params.stream));
}
checkCudaErrors(cudaEventRecord(stopEvent, params.stream));
}
} else {
std::vector<const unsigned char *> raw_inputs;
for (int i = 0; i < params.batch_size; i++) {
raw_inputs.push_back((const unsigned char *)img_data[i].data());
}
checkCudaErrors(cudaEventRecord(startEvent, params.stream));
checkCudaErrors(nvjpegDecodeBatched(
params.nvjpeg_handle, params.nvjpeg_state, raw_inputs.data(),
img_len.data(), out.data(), params.stream));
checkCudaErrors(cudaEventRecord(stopEvent, params.stream));
}
checkCudaErrors(cudaEventSynchronize(stopEvent));
checkCudaErrors(cudaEventElapsedTime(&loopTime, startEvent, stopEvent));
time = static_cast<double>(loopTime);
return EXIT_SUCCESS;
}
int write_images(std::vector<nvjpegImage_t> &iout, std::vector<int> &widths,
std::vector<int> &heights, decode_params_t ¶ms,
FileNames &filenames) {
for (int i = 0; i < params.batch_size; i++) {
// Get the file name, without extension.
// This will be used to rename the output file.
size_t position = filenames[i].rfind("/");
std::string sFileName =
(std::string::npos == position)
? filenames[i]
: filenames[i].substr(position + 1, filenames[i].size());
position = sFileName.rfind(".");
sFileName = (std::string::npos == position) ? sFileName
: sFileName.substr(0, position);
std::string fname(params.output_dir + "/" + sFileName + ".bmp");
int err;
if (params.fmt == NVJPEG_OUTPUT_RGB || params.fmt == NVJPEG_OUTPUT_BGR) {
err = writeBMP(fname.c_str(), iout[i].channel[0], iout[i].pitch[0],
iout[i].channel[1], iout[i].pitch[1], iout[i].channel[2],
iout[i].pitch[2], widths[i], heights[i]);
} else if (params.fmt == NVJPEG_OUTPUT_RGBI ||
params.fmt == NVJPEG_OUTPUT_BGRI) {
// Write BMP from interleaved data
err = writeBMPi(fname.c_str(), iout[i].channel[0], iout[i].pitch[0],
widths[i], heights[i]);
}
if (err) {
std::cout << "Cannot write output file: " << fname << std::endl;
return EXIT_FAILURE;
}
std::cout << "Done writing decoded image to file: " << fname << std::endl;
}
}
double process_images(FileNames &image_names, decode_params_t ¶ms,
double &total) {
// vector for storing raw files and file lengths
FileData file_data(params.batch_size);
std::vector<size_t> file_len(params.batch_size);
FileNames current_names(params.batch_size);
std::vector<int> widths(params.batch_size);
std::vector<int> heights(params.batch_size);
// we wrap over image files to process total_images of files
FileNames::iterator file_iter = image_names.begin();
// stream for decoding
checkCudaErrors(
cudaStreamCreateWithFlags(¶ms.stream, cudaStreamNonBlocking));
int total_processed = 0;
// output buffers
std::vector<nvjpegImage_t> iout(params.batch_size);
// output buffer sizes, for convenience
std::vector<nvjpegImage_t> isz(params.batch_size);
for (int i = 0; i < iout.size(); i++) {
for (int c = 0; c < NVJPEG_MAX_COMPONENT; c++) {
iout[i].channel[c] = NULL;
iout[i].pitch[c] = 0;
isz[i].pitch[c] = 0;
}
}
double test_time = 0;
int warmup = 0;
while (total_processed < params.total_images) {
if (read_next_batch(image_names, params.batch_size, file_iter, file_data,
file_len, current_names))
return EXIT_FAILURE;
if (prepare_buffers(file_data, file_len, widths, heights, iout, isz,
current_names, params))
return EXIT_FAILURE;
double time;
if (decode_images(file_data, file_len, iout, params, time))
return EXIT_FAILURE;
if (warmup < params.warmup) {
warmup++;
} else {
total_processed += params.batch_size;
test_time += time;
}
if (params.write_decoded)
write_images(iout, widths, heights, params, current_names);
}
total = test_time;
release_buffers(iout);
checkCudaErrors(cudaStreamDestroy(params.stream));
return EXIT_SUCCESS;
}
// parse parameters
int findParamIndex(const char **argv, int argc, const char *parm) {
int count = 0;
int index = -1;
for (int i = 0; i < argc; i++) {
if (strncmp(argv[i], parm, 100) == 0) {
index = i;
count++;
}
}
if (count == 0 || count == 1) {
return index;
} else {
std::cout << "Error, parameter " << parm
<< " has been specified more than once, exiting\n"
<< std::endl;
return -1;
}
return -1;
}
int main(int argc, const char *argv[]) {
int pidx;
if ((pidx = findParamIndex(argv, argc, "-h")) != -1 ||
(pidx = findParamIndex(argv, argc, "--help")) != -1) {
std::cout << "Usage: " << argv[0]
<< " -i images_dir [-b batch_size] [-t total_images] [-device= "
"device_id] [-w warmup_iterations] [-o output_dir] "
"[-pipelined] [-batched] [-fmt output_format]\n";
std::cout << "Parameters: " << std::endl;
std::cout << "\timages_dir\t:\tPath to single image or directory of images"
<< std::endl;
std::cout << "\tbatch_size\t:\tDecode images from input by batches of "
"specified size"
<< std::endl;
std::cout << "\ttotal_images\t:\tDecode this much images, if there are "
"less images \n"
<< "\t\t\t\t\tin the input than total images, decoder will loop "
"over the input"
<< std::endl;
std::cout << "\tdevice_id\t:\tWhich device to use for decoding"
<< std::endl;
std::cout << "\twarmup_iterations\t:\tRun this amount of batches first "
"without measuring performance"
<< std::endl;
std::cout
<< "\toutput_dir\t:\tWrite decoded images as BMPs to this directory"
<< std::endl;
std::cout << "\tpipelined\t:\tUse decoding in phases" << std::endl;
std::cout << "\tbatched\t\t:\tUse batched interface" << std::endl;
std::cout << "\toutput_format\t:\tnvJPEG output format for decoding. One "
"of [rgb, rgbi, bgr, bgri, yuv, y, unchanged]"
<< std::endl;
return EXIT_SUCCESS;
}
decode_params_t params;
params.input_dir = "./";
if ((pidx = findParamIndex(argv, argc, "-i")) != -1) {
params.input_dir = argv[pidx + 1];
} else {
// Search in default paths for input images.
int found = getInputDir(params.input_dir, argv[0]);
if (!found)
{
std::cout << "Please specify input directory with encoded images"<< std::endl;
return EXIT_WAIVED;
}
}
params.batch_size = 1;
if ((pidx = findParamIndex(argv, argc, "-b")) != -1) {
params.batch_size = std::atoi(argv[pidx + 1]);
}
params.total_images = -1;
if ((pidx = findParamIndex(argv, argc, "-t")) != -1) {
params.total_images = std::atoi(argv[pidx + 1]);
}
params.dev = 0;
params.dev = findCudaDevice(argc, argv);
params.warmup = 0;
if ((pidx = findParamIndex(argv, argc, "-w")) != -1) {
params.warmup = std::atoi(argv[pidx + 1]);
}
params.batched = false;
if ((pidx = findParamIndex(argv, argc, "-batched")) != -1) {
params.batched = true;
}
params.pipelined = false;
if ((pidx = findParamIndex(argv, argc, "-pipelined")) != -1) {
params.pipelined = true;
}
params.fmt = NVJPEG_OUTPUT_RGB;
if ((pidx = findParamIndex(argv, argc, "-fmt")) != -1) {
std::string sfmt = argv[pidx + 1];
if (sfmt == "rgb")
params.fmt = NVJPEG_OUTPUT_RGB;
else if (sfmt == "bgr")
params.fmt = NVJPEG_OUTPUT_BGR;
else if (sfmt == "rgbi")
params.fmt = NVJPEG_OUTPUT_RGBI;
else if (sfmt == "bgri")
params.fmt = NVJPEG_OUTPUT_BGRI;
else if (sfmt == "yuv")
params.fmt = NVJPEG_OUTPUT_YUV;
else if (sfmt == "y")
params.fmt = NVJPEG_OUTPUT_Y;
else if (sfmt == "unchanged")
params.fmt = NVJPEG_OUTPUT_UNCHANGED;
else {
std::cout << "Unknown format: " << sfmt << std::endl;
return EXIT_FAILURE;
}
}
params.write_decoded = false;
if ((pidx = findParamIndex(argv, argc, "-o")) != -1) {
params.output_dir = argv[pidx + 1];
if (params.fmt != NVJPEG_OUTPUT_RGB && params.fmt != NVJPEG_OUTPUT_BGR &&
params.fmt != NVJPEG_OUTPUT_RGBI && params.fmt != NVJPEG_OUTPUT_BGRI) {
std::cout << "We can write ony BMPs, which require output format be "
"either RGB/BGR or RGBi/BGRi"
<< std::endl;
return EXIT_FAILURE;
}
params.write_decoded = true;
}
cudaDeviceProp props;
checkCudaErrors(cudaGetDeviceProperties(&props, params.dev));
printf("Using GPU %d (%s, %d SMs, %d th/SM max, CC %d.%d, ECC %s)\n",
params.dev, props.name, props.multiProcessorCount,
props.maxThreadsPerMultiProcessor, props.major, props.minor,
props.ECCEnabled ? "on" : "off");
nvjpegDevAllocator_t dev_allocator = {&dev_malloc, &dev_free};
nvjpegPinnedAllocator_t pinned_allocator ={&host_malloc, &host_free};
int flags = 0;
checkCudaErrors(nvjpegCreateEx(NVJPEG_BACKEND_DEFAULT, &dev_allocator,
&pinned_allocator,flags, ¶ms.nvjpeg_handle));
checkCudaErrors(
nvjpegJpegStateCreate(params.nvjpeg_handle, ¶ms.nvjpeg_state));
checkCudaErrors(
nvjpegDecodeBatchedInitialize(params.nvjpeg_handle, params.nvjpeg_state,
params.batch_size, 1, params.fmt));
if(params.pipelined ){
create_decoupled_api_handles(params);
}
// read source images
FileNames image_names;
readInput(params.input_dir, image_names);
if (params.total_images == -1) {
params.total_images = image_names.size();
} else if (params.total_images % params.batch_size) {
params.total_images =
((params.total_images) / params.batch_size) * params.batch_size;
std::cout << "Changing total_images number to " << params.total_images
<< " to be multiple of batch_size - " << params.batch_size
<< std::endl;
}
std::cout << "Decoding images in directory: " << params.input_dir
<< ", total " << params.total_images << ", batchsize "
<< params.batch_size << std::endl;
double total;
if (process_images(image_names, params, total)) return EXIT_FAILURE;
std::cout << "Total decoding time: " << total << std::endl;
std::cout << "Avg decoding time per image: " << total / params.total_images
<< std::endl;
std::cout << "Avg images per sec: " << params.total_images / total
<< std::endl;
std::cout << "Avg decoding time per batch: "
<< total / ((params.total_images + params.batch_size - 1) /
params.batch_size)
<< std::endl;
if(params.pipelined ){
destroy_decoupled_api_handles(params);
}
checkCudaErrors(nvjpegJpegStateDestroy(params.nvjpeg_state));
checkCudaErrors(nvjpegDestroy(params.nvjpeg_handle));
return EXIT_SUCCESS;
}
|