1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
///////////////////////////////////////////////////////////////////////////////
#include <cufft.h>
#include <math_constants.h>
// Round a / b to nearest higher integer value
int cuda_iDivUp(int a, int b) { return (a + (b - 1)) / b; }
// complex math functions
__device__ float2 conjugate(float2 arg) { return make_float2(arg.x, -arg.y); }
__device__ float2 complex_exp(float arg) {
return make_float2(cosf(arg), sinf(arg));
}
__device__ float2 complex_add(float2 a, float2 b) {
return make_float2(a.x + b.x, a.y + b.y);
}
__device__ float2 complex_mult(float2 ab, float2 cd) {
return make_float2(ab.x * cd.x - ab.y * cd.y, ab.x * cd.y + ab.y * cd.x);
}
// generate wave heightfield at time t based on initial heightfield and
// dispersion relationship
__global__ void generateSpectrumKernel(float2 *h0, float2 *ht,
unsigned int in_width,
unsigned int out_width,
unsigned int out_height, float t,
float patchSize) {
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int in_index = y * in_width + x;
unsigned int in_mindex =
(out_height - y) * in_width + (out_width - x); // mirrored
unsigned int out_index = y * out_width + x;
// calculate wave vector
float2 k;
k.x = (-(int)out_width / 2.0f + x) * (2.0f * CUDART_PI_F / patchSize);
k.y = (-(int)out_width / 2.0f + y) * (2.0f * CUDART_PI_F / patchSize);
// calculate dispersion w(k)
float k_len = sqrtf(k.x * k.x + k.y * k.y);
float w = sqrtf(9.81f * k_len);
if ((x < out_width) && (y < out_height)) {
float2 h0_k = h0[in_index];
float2 h0_mk = h0[in_mindex];
// output frequency-space complex values
ht[out_index] =
complex_add(complex_mult(h0_k, complex_exp(w * t)),
complex_mult(conjugate(h0_mk), complex_exp(-w * t)));
// ht[out_index] = h0_k;
}
}
// update height map values based on output of FFT
__global__ void updateHeightmapKernel(float *heightMap, float2 *ht,
unsigned int width) {
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int i = y * width + x;
// cos(pi * (m1 + m2))
float sign_correction = ((x + y) & 0x01) ? -1.0f : 1.0f;
heightMap[i] = ht[i].x * sign_correction;
}
// update height map values based on output of FFT
__global__ void updateHeightmapKernel_y(float *heightMap, float2 *ht,
unsigned int width) {
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int i = y * width + x;
// cos(pi * (m1 + m2))
float sign_correction = ((x + y) & 0x01) ? -1.0f : 1.0f;
heightMap[i] = ht[i].y * sign_correction;
}
// generate slope by partial differences in spatial domain
__global__ void calculateSlopeKernel(float *h, float2 *slopeOut,
unsigned int width, unsigned int height) {
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int i = y * width + x;
float2 slope = make_float2(0.0f, 0.0f);
if ((x > 0) && (y > 0) && (x < width - 1) && (y < height - 1)) {
slope.x = h[i + 1] - h[i - 1];
slope.y = h[i + width] - h[i - width];
}
slopeOut[i] = slope;
}
// wrapper functions
extern "C" void cudaGenerateSpectrumKernel(float2 *d_h0, float2 *d_ht,
unsigned int in_width,
unsigned int out_width,
unsigned int out_height,
float animTime, float patchSize) {
dim3 block(8, 8, 1);
dim3 grid(cuda_iDivUp(out_width, block.x), cuda_iDivUp(out_height, block.y),
1);
generateSpectrumKernel<<<grid, block>>>(d_h0, d_ht, in_width, out_width,
out_height, animTime, patchSize);
}
extern "C" void cudaUpdateHeightmapKernel(float *d_heightMap, float2 *d_ht,
unsigned int width,
unsigned int height, bool autoTest) {
dim3 block(8, 8, 1);
dim3 grid(cuda_iDivUp(width, block.x), cuda_iDivUp(height, block.y), 1);
if (autoTest) {
updateHeightmapKernel_y<<<grid, block>>>(d_heightMap, d_ht, width);
} else {
updateHeightmapKernel<<<grid, block>>>(d_heightMap, d_ht, width);
}
}
extern "C" void cudaCalculateSlopeKernel(float *hptr, float2 *slopeOut,
unsigned int width,
unsigned int height) {
dim3 block(8, 8, 1);
dim3 grid2(cuda_iDivUp(width, block.x), cuda_iDivUp(height, block.y), 1);
calculateSlopeKernel<<<grid2, block>>>(hptr, slopeOut, width, height);
}
|