1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This example demonstrates how to use the CUBLAS library
* by scaling an array of floating-point values on the device
* and comparing the result to the same operation performed
* on the host.
*/
/* Includes, system */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* Includes, cuda */
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include <helper_cuda.h>
/* Matrix size */
#define N (275)
/* Host implementation of a simple version of sgemm */
static void simple_sgemm(int n, float alpha, const float *A, const float *B,
float beta, float *C) {
int i;
int j;
int k;
for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j) {
float prod = 0;
for (k = 0; k < n; ++k) {
prod += A[k * n + i] * B[j * n + k];
}
C[j * n + i] = alpha * prod + beta * C[j * n + i];
}
}
}
/* Main */
int main(int argc, char **argv) {
cublasStatus_t status;
float *h_A;
float *h_B;
float *h_C;
float *h_C_ref;
float *d_A = 0;
float *d_B = 0;
float *d_C = 0;
float alpha = 1.0f;
float beta = 0.0f;
int n2 = N * N;
int i;
float error_norm;
float ref_norm;
float diff;
cublasHandle_t handle;
int dev = findCudaDevice(argc, (const char **)argv);
if (dev == -1) {
return EXIT_FAILURE;
}
/* Initialize CUBLAS */
printf("simpleCUBLAS test running..\n");
status = cublasCreate(&handle);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! CUBLAS initialization error\n");
return EXIT_FAILURE;
}
/* Allocate host memory for the matrices */
h_A = reinterpret_cast<float *>(malloc(n2 * sizeof(h_A[0])));
if (h_A == 0) {
fprintf(stderr, "!!!! host memory allocation error (A)\n");
return EXIT_FAILURE;
}
h_B = reinterpret_cast<float *>(malloc(n2 * sizeof(h_B[0])));
if (h_B == 0) {
fprintf(stderr, "!!!! host memory allocation error (B)\n");
return EXIT_FAILURE;
}
h_C = reinterpret_cast<float *>(malloc(n2 * sizeof(h_C[0])));
if (h_C == 0) {
fprintf(stderr, "!!!! host memory allocation error (C)\n");
return EXIT_FAILURE;
}
/* Fill the matrices with test data */
for (i = 0; i < n2; i++) {
h_A[i] = rand() / static_cast<float>(RAND_MAX);
h_B[i] = rand() / static_cast<float>(RAND_MAX);
h_C[i] = rand() / static_cast<float>(RAND_MAX);
}
/* Allocate device memory for the matrices */
if (cudaMalloc(reinterpret_cast<void **>(&d_A), n2 * sizeof(d_A[0])) !=
cudaSuccess) {
fprintf(stderr, "!!!! device memory allocation error (allocate A)\n");
return EXIT_FAILURE;
}
if (cudaMalloc(reinterpret_cast<void **>(&d_B), n2 * sizeof(d_B[0])) !=
cudaSuccess) {
fprintf(stderr, "!!!! device memory allocation error (allocate B)\n");
return EXIT_FAILURE;
}
if (cudaMalloc(reinterpret_cast<void **>(&d_C), n2 * sizeof(d_C[0])) !=
cudaSuccess) {
fprintf(stderr, "!!!! device memory allocation error (allocate C)\n");
return EXIT_FAILURE;
}
/* Initialize the device matrices with the host matrices */
status = cublasSetVector(n2, sizeof(h_A[0]), h_A, 1, d_A, 1);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! device access error (write A)\n");
return EXIT_FAILURE;
}
status = cublasSetVector(n2, sizeof(h_B[0]), h_B, 1, d_B, 1);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! device access error (write B)\n");
return EXIT_FAILURE;
}
status = cublasSetVector(n2, sizeof(h_C[0]), h_C, 1, d_C, 1);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! device access error (write C)\n");
return EXIT_FAILURE;
}
/* Performs operation using plain C code */
simple_sgemm(N, alpha, h_A, h_B, beta, h_C);
h_C_ref = h_C;
/* Performs operation using cublas */
status = cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, N, N, N, &alpha, d_A,
N, d_B, N, &beta, d_C, N);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! kernel execution error.\n");
return EXIT_FAILURE;
}
/* Allocate host memory for reading back the result from device memory */
h_C = reinterpret_cast<float *>(malloc(n2 * sizeof(h_C[0])));
if (h_C == 0) {
fprintf(stderr, "!!!! host memory allocation error (C)\n");
return EXIT_FAILURE;
}
/* Read the result back */
status = cublasGetVector(n2, sizeof(h_C[0]), d_C, 1, h_C, 1);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! device access error (read C)\n");
return EXIT_FAILURE;
}
/* Check result against reference */
error_norm = 0;
ref_norm = 0;
for (i = 0; i < n2; ++i) {
diff = h_C_ref[i] - h_C[i];
error_norm += diff * diff;
ref_norm += h_C_ref[i] * h_C_ref[i];
}
error_norm = static_cast<float>(sqrt(static_cast<double>(error_norm)));
ref_norm = static_cast<float>(sqrt(static_cast<double>(ref_norm)));
if (fabs(ref_norm) < 1e-7) {
fprintf(stderr, "!!!! reference norm is 0\n");
return EXIT_FAILURE;
}
/* Memory clean up */
free(h_A);
free(h_B);
free(h_C);
free(h_C_ref);
if (cudaFree(d_A) != cudaSuccess) {
fprintf(stderr, "!!!! memory free error (A)\n");
return EXIT_FAILURE;
}
if (cudaFree(d_B) != cudaSuccess) {
fprintf(stderr, "!!!! memory free error (B)\n");
return EXIT_FAILURE;
}
if (cudaFree(d_C) != cudaSuccess) {
fprintf(stderr, "!!!! memory free error (C)\n");
return EXIT_FAILURE;
}
/* Shutdown */
status = cublasDestroy(handle);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr, "!!!! shutdown error (A)\n");
return EXIT_FAILURE;
}
if (error_norm / ref_norm < 1e-6f) {
printf("simpleCUBLAS test passed.\n");
exit(EXIT_SUCCESS);
} else {
printf("simpleCUBLAS test failed.\n");
exit(EXIT_FAILURE);
}
}
|