1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Example showing the use of CUFFT for fast 1D-convolution using FFT. */
// includes, system
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// includes, project
#include <cuda_runtime.h>
#include <cufft.h>
#include <cufftXt.h>
#include <helper_cuda.h>
#include <helper_functions.h>
// Complex data type
typedef float2 Complex;
static __device__ __host__ inline Complex ComplexAdd(Complex, Complex);
static __device__ __host__ inline Complex ComplexScale(Complex, float);
static __device__ __host__ inline Complex ComplexMul(Complex, Complex);
static __global__ void ComplexPointwiseMulAndScale(Complex *, const Complex *,
int, float);
// Filtering functions
void Convolve(const Complex *, int, const Complex *, int, Complex *);
// Padding functions
int PadData(const Complex *, Complex **, int, const Complex *, Complex **, int);
////////////////////////////////////////////////////////////////////////////////
// declaration, forward
void runTest(int argc, char **argv);
// The filter size is assumed to be a number smaller than the signal size
#define SIGNAL_SIZE 50
#define FILTER_KERNEL_SIZE 11
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) { runTest(argc, argv); }
////////////////////////////////////////////////////////////////////////////////
//! Run a simple test for CUDA
////////////////////////////////////////////////////////////////////////////////
void runTest(int argc, char **argv) {
printf("[simpleCUFFT] is starting...\n");
findCudaDevice(argc, (const char **)argv);
// Allocate host memory for the signal
Complex *h_signal =
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * SIGNAL_SIZE));
// Initialize the memory for the signal
for (unsigned int i = 0; i < SIGNAL_SIZE; ++i) {
h_signal[i].x = rand() / static_cast<float>(RAND_MAX);
h_signal[i].y = 0;
}
// Allocate host memory for the filter
Complex *h_filter_kernel =
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * FILTER_KERNEL_SIZE));
// Initialize the memory for the filter
for (unsigned int i = 0; i < FILTER_KERNEL_SIZE; ++i) {
h_filter_kernel[i].x = rand() / static_cast<float>(RAND_MAX);
h_filter_kernel[i].y = 0;
}
// Pad signal and filter kernel
Complex *h_padded_signal;
Complex *h_padded_filter_kernel;
int new_size =
PadData(h_signal, &h_padded_signal, SIGNAL_SIZE, h_filter_kernel,
&h_padded_filter_kernel, FILTER_KERNEL_SIZE);
int mem_size = sizeof(Complex) * new_size;
// Allocate device memory for signal
Complex *d_signal;
checkCudaErrors(cudaMalloc(reinterpret_cast<void **>(&d_signal), mem_size));
// Copy host memory to device
checkCudaErrors(
cudaMemcpy(d_signal, h_padded_signal, mem_size, cudaMemcpyHostToDevice));
// Allocate device memory for filter kernel
Complex *d_filter_kernel;
checkCudaErrors(
cudaMalloc(reinterpret_cast<void **>(&d_filter_kernel), mem_size));
// Copy host memory to device
checkCudaErrors(cudaMemcpy(d_filter_kernel, h_padded_filter_kernel, mem_size,
cudaMemcpyHostToDevice));
// CUFFT plan simple API
cufftHandle plan;
checkCudaErrors(cufftPlan1d(&plan, new_size, CUFFT_C2C, 1));
// CUFFT plan advanced API
cufftHandle plan_adv;
size_t workSize;
long long int new_size_long = new_size;
checkCudaErrors(cufftCreate(&plan_adv));
checkCudaErrors(cufftXtMakePlanMany(plan_adv, 1, &new_size_long, NULL, 1, 1,
CUDA_C_32F, NULL, 1, 1, CUDA_C_32F, 1,
&workSize, CUDA_C_32F));
printf("Temporary buffer size %li bytes\n", workSize);
// Transform signal and kernel
printf("Transforming signal cufftExecC2C\n");
checkCudaErrors(cufftExecC2C(plan, reinterpret_cast<cufftComplex *>(d_signal),
reinterpret_cast<cufftComplex *>(d_signal),
CUFFT_FORWARD));
checkCudaErrors(cufftExecC2C(
plan_adv, reinterpret_cast<cufftComplex *>(d_filter_kernel),
reinterpret_cast<cufftComplex *>(d_filter_kernel), CUFFT_FORWARD));
// Multiply the coefficients together and normalize the result
printf("Launching ComplexPointwiseMulAndScale<<< >>>\n");
ComplexPointwiseMulAndScale<<<32, 256>>>(d_signal, d_filter_kernel, new_size,
1.0f / new_size);
// Check if kernel execution generated and error
getLastCudaError("Kernel execution failed [ ComplexPointwiseMulAndScale ]");
// Transform signal back
printf("Transforming signal back cufftExecC2C\n");
checkCudaErrors(cufftExecC2C(plan, reinterpret_cast<cufftComplex *>(d_signal),
reinterpret_cast<cufftComplex *>(d_signal),
CUFFT_INVERSE));
// Copy device memory to host
Complex *h_convolved_signal = h_padded_signal;
checkCudaErrors(cudaMemcpy(h_convolved_signal, d_signal, mem_size,
cudaMemcpyDeviceToHost));
// Allocate host memory for the convolution result
Complex *h_convolved_signal_ref =
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * SIGNAL_SIZE));
// Convolve on the host
Convolve(h_signal, SIGNAL_SIZE, h_filter_kernel, FILTER_KERNEL_SIZE,
h_convolved_signal_ref);
// check result
bool bTestResult = sdkCompareL2fe(
reinterpret_cast<float *>(h_convolved_signal_ref),
reinterpret_cast<float *>(h_convolved_signal), 2 * SIGNAL_SIZE, 1e-5f);
// Destroy CUFFT context
checkCudaErrors(cufftDestroy(plan));
checkCudaErrors(cufftDestroy(plan_adv));
// cleanup memory
free(h_signal);
free(h_filter_kernel);
free(h_padded_signal);
free(h_padded_filter_kernel);
free(h_convolved_signal_ref);
checkCudaErrors(cudaFree(d_signal));
checkCudaErrors(cudaFree(d_filter_kernel));
exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
}
// Pad data
int PadData(const Complex *signal, Complex **padded_signal, int signal_size,
const Complex *filter_kernel, Complex **padded_filter_kernel,
int filter_kernel_size) {
int minRadius = filter_kernel_size / 2;
int maxRadius = filter_kernel_size - minRadius;
int new_size = signal_size + maxRadius;
// Pad signal
Complex *new_data =
reinterpret_cast<Complex *>(malloc(sizeof(Complex) * new_size));
memcpy(new_data + 0, signal, signal_size * sizeof(Complex));
memset(new_data + signal_size, 0, (new_size - signal_size) * sizeof(Complex));
*padded_signal = new_data;
// Pad filter
new_data = reinterpret_cast<Complex *>(malloc(sizeof(Complex) * new_size));
memcpy(new_data + 0, filter_kernel + minRadius, maxRadius * sizeof(Complex));
memset(new_data + maxRadius, 0,
(new_size - filter_kernel_size) * sizeof(Complex));
memcpy(new_data + new_size - minRadius, filter_kernel,
minRadius * sizeof(Complex));
*padded_filter_kernel = new_data;
return new_size;
}
////////////////////////////////////////////////////////////////////////////////
// Filtering operations
////////////////////////////////////////////////////////////////////////////////
// Computes convolution on the host
void Convolve(const Complex *signal, int signal_size,
const Complex *filter_kernel, int filter_kernel_size,
Complex *filtered_signal) {
int minRadius = filter_kernel_size / 2;
int maxRadius = filter_kernel_size - minRadius;
// Loop over output element indices
for (int i = 0; i < signal_size; ++i) {
filtered_signal[i].x = filtered_signal[i].y = 0;
// Loop over convolution indices
for (int j = -maxRadius + 1; j <= minRadius; ++j) {
int k = i + j;
if (k >= 0 && k < signal_size) {
filtered_signal[i] =
ComplexAdd(filtered_signal[i],
ComplexMul(signal[k], filter_kernel[minRadius - j]));
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Complex operations
////////////////////////////////////////////////////////////////////////////////
// Complex addition
static __device__ __host__ inline Complex ComplexAdd(Complex a, Complex b) {
Complex c;
c.x = a.x + b.x;
c.y = a.y + b.y;
return c;
}
// Complex scale
static __device__ __host__ inline Complex ComplexScale(Complex a, float s) {
Complex c;
c.x = s * a.x;
c.y = s * a.y;
return c;
}
// Complex multiplication
static __device__ __host__ inline Complex ComplexMul(Complex a, Complex b) {
Complex c;
c.x = a.x * b.x - a.y * b.y;
c.y = a.x * b.y + a.y * b.x;
return c;
}
// Complex pointwise multiplication
static __global__ void ComplexPointwiseMulAndScale(Complex *a, const Complex *b,
int size, float scale) {
const int numThreads = blockDim.x * gridDim.x;
const int threadID = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = threadID; i < size; i += numThreads) {
a[i] = ComplexScale(ComplexMul(a[i], b[i]), scale);
}
}
|