1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "common.h"
#include "flowGold.h"
///////////////////////////////////////////////////////////////////////////////
/// \brief host texture fetch
///
/// read from arbitrary position within image using bilinear interpolation
/// out of range coords are mirrored
/// \param[in] t texture raw data
/// \param[in] w texture width
/// \param[in] h texture height
/// \param[in] s texture stride
/// \param[in] x x coord of the point to fetch value at
/// \param[in] y y coord of the point to fetch value at
/// \return fetched value
///////////////////////////////////////////////////////////////////////////////
inline float Tex2D(const float *t, int w, int h, int s, float x, float y) {
// integer parts in floating point format
float intPartX, intPartY;
// get fractional parts of coordinates
float dx = fabsf(modff(x, &intPartX));
float dy = fabsf(modff(y, &intPartY));
// assume pixels are squares
// one of the corners
int ix0 = (int)intPartX;
int iy0 = (int)intPartY;
// mirror out-of-range position
if (ix0 < 0) ix0 = abs(ix0 + 1);
if (iy0 < 0) iy0 = abs(iy0 + 1);
if (ix0 >= w) ix0 = w * 2 - ix0 - 1;
if (iy0 >= h) iy0 = h * 2 - iy0 - 1;
// corner which is opposite to (ix0, iy0)
int ix1 = ix0 + 1;
int iy1 = iy0 + 1;
if (ix1 >= w) ix1 = w * 2 - ix1 - 1;
if (iy1 >= h) iy1 = h * 2 - iy1 - 1;
float res = t[ix0 + iy0 * s] * (1.0f - dx) * (1.0f - dy);
res += t[ix1 + iy0 * s] * dx * (1.0f - dy);
res += t[ix0 + iy1 * s] * (1.0f - dx) * dy;
res += t[ix1 + iy1 * s] * dx * dy;
return res;
}
///////////////////////////////////////////////////////////////////////////////
/// \brief host texture fetch
///
/// read specific texel value
/// out of range coords are mirrored
/// \param[in] t texture raw data
/// \param[in] w texture width
/// \param[in] h texture height
/// \param[in] s texture stride
/// \param[in] x x coord of the point to fetch value at
/// \param[in] y y coord of the point to fetch value at
/// \return fetched value
///////////////////////////////////////////////////////////////////////////////
inline float Tex2Di(const float *src, int w, int h, int s, int x, int y) {
if (x < 0) x = abs(x + 1);
if (y < 0) y = abs(y + 1);
if (x >= w) x = w * 2 - x - 1;
if (y >= h) y = h * 2 - y - 1;
return src[x + y * s];
}
///////////////////////////////////////////////////////////////////////////////
/// \brief resize image
/// \param[in] src image to downscale
/// \param[in] width image width
/// \param[in] height image height
/// \param[in] stride image stride
/// \param[in] newWidth image new width
/// \param[in] newHeight image new height
/// \param[in] newStride image new stride
/// \param[out] out downscaled image data
///////////////////////////////////////////////////////////////////////////////
static void Downscale(const float *src, int width, int height, int stride,
int newWidth, int newHeight, int newStride, float *out) {
for (int i = 0; i < newHeight; ++i) {
for (int j = 0; j < newWidth; ++j) {
const int srcX = j * 2;
const int srcY = i * 2;
// average 4 neighbouring pixels
float sum;
sum = Tex2Di(src, width, height, stride, srcX + 0, srcY + 0);
sum += Tex2Di(src, width, height, stride, srcX + 0, srcY + 1);
sum += Tex2Di(src, width, height, stride, srcX + 1, srcY + 0);
sum += Tex2Di(src, width, height, stride, srcX + 1, srcY + 1);
// normalize
sum *= 0.25f;
out[j + i * newStride] = sum;
}
}
}
///////////////////////////////////////////////////////////////////////////////
/// \brief upscale one component of a displacement field
/// \param[in] src field component to upscale
/// \param[in] width field current width
/// \param[in] height field current height
/// \param[in] stride field current stride
/// \param[in] newWidth field new width
/// \param[in] newHeight field new height
/// \param[in] newStride field new stride
/// \param[in] scale value scale factor (multiplier)
/// \param[out] out upscaled field component
///////////////////////////////////////////////////////////////////////////////
static void Upscale(const float *src, int width, int height, int stride,
int newWidth, int newHeight, int newStride, float scale,
float *out) {
for (int i = 0; i < newHeight; ++i) {
for (int j = 0; j < newWidth; ++j) {
// position within smaller image
float x = ((float)j - 0.5f) * 0.5f;
float y = ((float)i - 0.5f) * 0.5f;
out[j + i * newStride] = Tex2D(src, width, height, stride, x, y) * scale;
}
}
}
///////////////////////////////////////////////////////////////////////////////
/// \brief warp image with provided vector field
///
/// For each output pixel there is a vector which tells which pixel
/// from a source image should be mapped to this particular output
/// pixel.
/// It is assumed that images and the vector field have the same stride and
/// resolution.
/// \param[in] src source image
/// \param[in] w width
/// \param[in] h height
/// \param[in] s stride
/// \param[in] u horizontal displacement
/// \param[in] v vertical displacement
/// \param[out] out warped image
///////////////////////////////////////////////////////////////////////////////
static void WarpImage(const float *src, int w, int h, int s, const float *u,
const float *v, float *out) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
const int pos = j + i * s;
// warped coords
float x = (float)j + u[pos];
float y = (float)i + v[pos];
out[pos] = Tex2D(src, w, h, s, x, y);
}
}
}
///////////////////////////////////////////////////////////////////////////////
/// \brief computes image derivatives for a pair of images
/// \param[in] I0 source image
/// \param[in] I1 tracked image
/// \param[in] w images width
/// \param[in] h images height
/// \param[in] s images stride
/// \param[out] Ix x derivative
/// \param[out] Iy y derivative
/// \param[out] Iz temporal derivative
///////////////////////////////////////////////////////////////////////////////
static void ComputeDerivatives(const float *I0, const float *I1, int w, int h,
int s, float *Ix, float *Iy, float *Iz) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
const int pos = j + i * s;
float t0, t1;
// derivative filter is (1, -8, 0, 8, -1)/12
// x derivative
t0 = Tex2Di(I0, w, h, s, j - 2, i);
t0 -= Tex2Di(I0, w, h, s, j - 1, i) * 8.0f;
t0 += Tex2Di(I0, w, h, s, j + 1, i) * 8.0f;
t0 -= Tex2Di(I0, w, h, s, j + 2, i);
t0 /= 12.0f;
t1 = Tex2Di(I1, w, h, s, j - 2, i);
t1 -= Tex2Di(I1, w, h, s, j - 1, i) * 8.0f;
t1 += Tex2Di(I1, w, h, s, j + 1, i) * 8.0f;
t1 -= Tex2Di(I1, w, h, s, j + 2, i);
t1 /= 12.0f;
// spatial derivatives are averaged
Ix[pos] = (t0 + t1) * 0.5f;
// t derivative
Iz[pos] = I1[pos] - I0[pos];
// y derivative
t0 = Tex2Di(I0, w, h, s, j, i - 2);
t0 -= Tex2Di(I0, w, h, s, j, i - 1) * 8.0f;
t0 += Tex2Di(I0, w, h, s, j, i + 1) * 8.0f;
t0 -= Tex2Di(I0, w, h, s, j, i + 2);
t0 /= 12.0f;
t1 = Tex2Di(I1, w, h, s, j, i - 2);
t1 -= Tex2Di(I1, w, h, s, j, i - 1) * 8.0f;
t1 += Tex2Di(I1, w, h, s, j, i + 1) * 8.0f;
t1 -= Tex2Di(I1, w, h, s, j, i + 2);
t1 /= 12.0f;
Iy[pos] = (t0 + t1) * 0.5f;
}
}
}
///////////////////////////////////////////////////////////////////////////////
/// \brief one iteration of classical Horn-Schunck method
///
/// It is one iteration of Jacobi method for a corresponding linear system
/// \param[in] du0 current horizontal displacement approximation
/// \param[in] dv0 current vertical displacement approximation
/// \param[in] Ix image x derivative
/// \param[in] Iy image y derivative
/// \param[in] Iz temporal derivative
/// \param[in] w width
/// \param[in] h height
/// \param[in] s stride
/// \param[in] alpha degree of smoothness
/// \param[out] du1 new horizontal displacement approximation
/// \param[out] dv1 new vertical displacement approximation
///////////////////////////////////////////////////////////////////////////////
static void SolveForUpdate(const float *du0, const float *dv0, const float *Ix,
const float *Iy, const float *Iz, int w, int h,
int s, float alpha, float *du1, float *dv1) {
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
const int pos = j + i * s;
int left, right, up, down;
// handle borders
if (j != 0)
left = pos - 1;
else
left = pos;
if (j != w - 1)
right = pos + 1;
else
right = pos;
if (i != 0)
down = pos - s;
else
down = pos;
if (i != h - 1)
up = pos + s;
else
up = pos;
float sumU = (du0[left] + du0[right] + du0[up] + du0[down]) * 0.25f;
float sumV = (dv0[left] + dv0[right] + dv0[up] + dv0[down]) * 0.25f;
float frac = (Ix[pos] * sumU + Iy[pos] * sumV + Iz[pos]) /
(Ix[pos] * Ix[pos] + Iy[pos] * Iy[pos] + alpha);
du1[pos] = sumU - Ix[pos] * frac;
dv1[pos] = sumV - Iy[pos] * frac;
}
}
}
///////////////////////////////////////////////////////////////////////////////
/// \brief method logic
///
/// handles memory allocation and control flow
/// \param[in] I0 source image
/// \param[in] I1 tracked image
/// \param[in] width images width
/// \param[in] height images height
/// \param[in] stride images stride
/// \param[in] alpha degree of displacement field smoothness
/// \param[in] nLevels number of levels in a pyramid
/// \param[in] nWarpIters number of warping iterations per pyramid level
/// \param[in] nSolverIters number of solver iterations (Jacobi iterations)
/// \param[out] u horizontal displacement
/// \param[out] v vertical displacement
///////////////////////////////////////////////////////////////////////////////
void ComputeFlowGold(const float *I0, const float *I1, int width, int height,
int stride, float alpha, int nLevels, int nWarpIters,
int nSolverIters, float *u, float *v) {
printf("Computing optical flow on CPU...\n");
float *u0 = u;
float *v0 = v;
const float **pI0 = new const float *[nLevels];
const float **pI1 = new const float *[nLevels];
int *pW = new int[nLevels];
int *pH = new int[nLevels];
int *pS = new int[nLevels];
const int pixelCountAligned = height * stride;
float *tmp = new float[pixelCountAligned];
float *du0 = new float[pixelCountAligned];
float *dv0 = new float[pixelCountAligned];
float *du1 = new float[pixelCountAligned];
float *dv1 = new float[pixelCountAligned];
float *Ix = new float[pixelCountAligned];
float *Iy = new float[pixelCountAligned];
float *Iz = new float[pixelCountAligned];
float *nu = new float[pixelCountAligned];
float *nv = new float[pixelCountAligned];
// prepare pyramid
int currentLevel = nLevels - 1;
pI0[currentLevel] = I0;
pI1[currentLevel] = I1;
pW[currentLevel] = width;
pH[currentLevel] = height;
pS[currentLevel] = stride;
for (; currentLevel > 0; --currentLevel) {
int nw = pW[currentLevel] / 2;
int nh = pH[currentLevel] / 2;
int ns = iAlignUp(nw);
pI0[currentLevel - 1] = new float[ns * nh];
pI1[currentLevel - 1] = new float[ns * nh];
Downscale(pI0[currentLevel], pW[currentLevel], pH[currentLevel],
pS[currentLevel], nw, nh, ns, (float *)pI0[currentLevel - 1]);
Downscale(pI1[currentLevel], pW[currentLevel], pH[currentLevel],
pS[currentLevel], nw, nh, ns, (float *)pI1[currentLevel - 1]);
pW[currentLevel - 1] = nw;
pH[currentLevel - 1] = nh;
pS[currentLevel - 1] = ns;
}
// initial approximation
memset(u, 0, stride * height * sizeof(float));
memset(v, 0, stride * height * sizeof(float));
// compute flow
for (; currentLevel < nLevels; ++currentLevel) {
for (int warpIter = 0; warpIter < nWarpIters; ++warpIter) {
memset(du0, 0, pixelCountAligned * sizeof(float));
memset(dv0, 0, pixelCountAligned * sizeof(float));
memset(du1, 0, pixelCountAligned * sizeof(float));
memset(dv1, 0, pixelCountAligned * sizeof(float));
WarpImage(pI1[currentLevel], pW[currentLevel], pH[currentLevel],
pS[currentLevel], u, v, tmp);
// on current level we compute optical flow
// between frame 0 and warped frame 1
ComputeDerivatives(pI0[currentLevel], tmp, pW[currentLevel],
pH[currentLevel], pS[currentLevel], Ix, Iy, Iz);
for (int iter = 0; iter < nSolverIters; ++iter) {
SolveForUpdate(du0, dv0, Ix, Iy, Iz, pW[currentLevel], pH[currentLevel],
pS[currentLevel], alpha, du1, dv1);
Swap(du0, du1);
Swap(dv0, dv1);
}
// update u, v
for (int i = 0; i < pH[currentLevel] * pS[currentLevel]; ++i) {
u[i] += du0[i];
v[i] += dv0[i];
}
} // end for (int warpIter = 0; warpIter < nWarpIters; ++warpIter)
if (currentLevel != nLevels - 1) {
// prolongate solution
float scaleX = (float)pW[currentLevel + 1] / (float)pW[currentLevel];
Upscale(u, pW[currentLevel], pH[currentLevel], pS[currentLevel],
pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1],
scaleX, nu);
float scaleY = (float)pH[currentLevel + 1] / (float)pH[currentLevel];
Upscale(v, pW[currentLevel], pH[currentLevel], pS[currentLevel],
pW[currentLevel + 1], pH[currentLevel + 1], pS[currentLevel + 1],
scaleY, nv);
Swap(u, nu);
Swap(v, nv);
}
} // end for (; currentLevel < nLevels; ++currentLevel)
if (u != u0) {
// solution is not in the specified array
// copy
memcpy(u0, u, pixelCountAligned * sizeof(float));
memcpy(v0, v, pixelCountAligned * sizeof(float));
Swap(u, nu);
Swap(v, nv);
}
// cleanup
// last level is not being freed here
// because it refers to input images
for (int i = 0; i < nLevels - 1; ++i) {
delete[] pI0[i];
delete[] pI1[i];
}
delete[] pI0;
delete[] pI1;
delete[] pW;
delete[] pH;
delete[] pS;
delete[] tmp;
delete[] du0;
delete[] dv0;
delete[] du1;
delete[] dv1;
delete[] Ix;
delete[] Iy;
delete[] Iz;
delete[] nu;
delete[] nv;
}
|