File: main.cpp

package info (click to toggle)
nvidia-cuda-samples 12.4.1~dfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 313,216 kB
  • sloc: cpp: 82,042; makefile: 53,971; xml: 15,381; ansic: 8,630; sh: 91; python: 74
file content (237 lines) | stat: -rw-r--r-- 7,850 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

const static char *const sSDKsample = "HSOpticalFlow";

// CPU-GPU discrepancy threshold for self-test
const float THRESHOLD = 0.05f;

#include <cuda_runtime.h>

#include "common.h"
#include "flowGold.h"
#include "flowCUDA.h"

#include <helper_functions.h>

///////////////////////////////////////////////////////////////////////////////
/// \brief save optical flow in format described on vision.middlebury.edu/flow
/// \param[in] name output file name
/// \param[in] w    optical flow field width
/// \param[in] h    optical flow field height
/// \param[in] s    optical flow field row stride
/// \param[in] u    horizontal displacement
/// \param[in] v    vertical displacement
///////////////////////////////////////////////////////////////////////////////
void WriteFloFile(const char *name, int w, int h, int s, const float *u,
                  const float *v) {
  FILE *stream;
  stream = fopen(name, "wb");

  if (stream == 0) {
    printf("Could not save flow to \"%s\"\n", name);
    return;
  }

  float data = 202021.25f;
  fwrite(&data, sizeof(float), 1, stream);
  fwrite(&w, sizeof(w), 1, stream);
  fwrite(&h, sizeof(h), 1, stream);

  for (int i = 0; i < h; ++i) {
    for (int j = 0; j < w; ++j) {
      const int pos = j + i * s;
      fwrite(u + pos, sizeof(float), 1, stream);
      fwrite(v + pos, sizeof(float), 1, stream);
    }
  }

  fclose(stream);
}

///////////////////////////////////////////////////////////////////////////////
/// \brief
/// load 4-channel unsigned byte image
/// and convert it to single channel FP32 image
/// \param[out] img_data pointer to raw image data
/// \param[out] img_w    image width
/// \param[out] img_h    image height
/// \param[out] img_s    image row stride
/// \param[in]  name     image file name
/// \param[in]  exePath  executable file path
/// \return true if image is successfully loaded or false otherwise
///////////////////////////////////////////////////////////////////////////////
bool LoadImageAsFP32(float *&img_data, int &img_w, int &img_h, int &img_s,
                     const char *name, const char *exePath) {
  printf("Loading \"%s\" ...\n", name);
  char *name_ = sdkFindFilePath(name, exePath);

  if (!name_) {
    printf("File not found\n");
    return false;
  }

  unsigned char *data = 0;
  unsigned int w = 0, h = 0;
  bool result = sdkLoadPPM4ub(name_, &data, &w, &h);

  if (result == false) {
    printf("Invalid file format\n");
    return false;
  }

  img_w = w;
  img_h = h;
  img_s = iAlignUp(img_w);

  img_data = new float[img_s * h];

  // source is 4 channel image
  const int widthStep = 4 * img_w;

  for (int i = 0; i < img_h; ++i) {
    for (int j = 0; j < img_w; ++j) {
      img_data[j + i * img_s] = ((float)data[j * 4 + i * widthStep]) / 255.0f;
    }
  }

  return true;
}

///////////////////////////////////////////////////////////////////////////////
/// \brief compare given flow field with gold (L1 norm)
/// \param[in] width    optical flow field width
/// \param[in] height   optical flow field height
/// \param[in] stride   optical flow field row stride
/// \param[in] h_uGold  horizontal displacement, gold
/// \param[in] h_vGold  vertical displacement, gold
/// \param[in] h_u      horizontal displacement
/// \param[in] h_v      vertical displacement
/// \return true if discrepancy is lower than a given threshold
///////////////////////////////////////////////////////////////////////////////
bool CompareWithGold(int width, int height, int stride, const float *h_uGold,
                     const float *h_vGold, const float *h_u, const float *h_v) {
  float error = 0.0f;

  for (int i = 0; i < height; ++i) {
    for (int j = 0; j < width; ++j) {
      const int pos = j + i * stride;
      error += fabsf(h_u[pos] - h_uGold[pos]) + fabsf(h_v[pos] - h_vGold[pos]);
    }
  }

  error /= (float)(width * height);

  printf("L1 error : %.6f\n", error);

  return (error < THRESHOLD);
}

///////////////////////////////////////////////////////////////////////////////
/// application entry point
///////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
  // welcome message
  printf("%s Starting...\n\n", sSDKsample);

  // pick GPU
  findCudaDevice(argc, (const char **)argv);

  // find images
  const char *const sourceFrameName = "frame10.ppm";
  const char *const targetFrameName = "frame11.ppm";

  // image dimensions
  int width;
  int height;
  // row access stride
  int stride;

  // flow is computed from source image to target image
  float *h_source;  // source image, host memory
  float *h_target;  // target image, host memory

  // load image from file
  if (!LoadImageAsFP32(h_source, width, height, stride, sourceFrameName,
                       argv[0])) {
    exit(EXIT_FAILURE);
  }

  if (!LoadImageAsFP32(h_target, width, height, stride, targetFrameName,
                       argv[0])) {
    exit(EXIT_FAILURE);
  }

  // allocate host memory for CPU results
  float *h_uGold = new float[stride * height];
  float *h_vGold = new float[stride * height];

  // allocate host memory for GPU results
  float *h_u = new float[stride * height];
  float *h_v = new float[stride * height];

  // smoothness
  // if image brightness is not within [0,1]
  // this paramter should be scaled appropriately
  const float alpha = 0.2f;

  // number of pyramid levels
  const int nLevels = 5;

  // number of solver iterations on each level
  const int nSolverIters = 500;

  // number of warping iterations
  const int nWarpIters = 3;

  ComputeFlowGold(h_source, h_target, width, height, stride, alpha, nLevels,
                  nWarpIters, nSolverIters, h_uGold, h_vGold);

  ComputeFlowCUDA(h_source, h_target, width, height, stride, alpha, nLevels,
                  nWarpIters, nSolverIters, h_u, h_v);

  // compare results (L1 norm)
  bool status =
      CompareWithGold(width, height, stride, h_uGold, h_vGold, h_u, h_v);

  WriteFloFile("FlowGPU.flo", width, height, stride, h_u, h_v);

  WriteFloFile("FlowCPU.flo", width, height, stride, h_uGold, h_vGold);

  // free resources
  delete[] h_uGold;
  delete[] h_vGold;

  delete[] h_u;
  delete[] h_v;

  delete[] h_source;
  delete[] h_target;

  // report self-test status
  exit(status ? EXIT_SUCCESS : EXIT_FAILURE);
}