1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include "helper_cuda.h"
#include "Mandelbrot_kernel.h"
// The dimensions of the thread block
#define BLOCKDIM_X 16
#define BLOCKDIM_Y 16
#define ABS(n) ((n) < 0 ? -(n) : (n))
// Double single functions based on DSFUN90 package:
// http://crd.lbl.gov/~dhbailey/mpdist/index.html
// This function sets the DS number A equal to the double precision floating
// point number B.
inline void dsdeq(float &a0, float &a1, double b) {
a0 = (float)b;
a1 = (float)(b - a0);
} // dsdcp
// This function sets the DS number A equal to the single precision floating
// point number B.
__device__ inline void dsfeq(float &a0, float &a1, float b) {
a0 = b;
a1 = 0.0f;
} // dsfeq
// This function computes c = a + b.
__device__ inline void dsadd(float &c0, float &c1, const float a0,
const float a1, const float b0, const float b1) {
// Compute dsa + dsb using Knuth's trick.
float t1 = a0 + b0;
float e = t1 - a0;
float t2 = ((b0 - e) + (a0 - (t1 - e))) + a1 + b1;
// The result is t1 + t2, after normalization.
c0 = e = t1 + t2;
c1 = t2 - (e - t1);
} // dsadd
// This function computes c = a - b.
__device__ inline void dssub(float &c0, float &c1, const float a0,
const float a1, const float b0, const float b1) {
// Compute dsa - dsb using Knuth's trick.
float t1 = a0 - b0;
float e = t1 - a0;
float t2 = ((-b0 - e) + (a0 - (t1 - e))) + a1 - b1;
// The result is t1 + t2, after normalization.
c0 = e = t1 + t2;
c1 = t2 - (e - t1);
} // dssub
#if 1
// This function multiplies DS numbers A and B to yield the DS product C.
__device__ inline void dsmul(float &c0, float &c1, const float a0,
const float a1, const float b0, const float b1) {
// This splits dsa(1) and dsb(1) into high-order and low-order words.
float cona = a0 * 8193.0f;
float conb = b0 * 8193.0f;
float sa1 = cona - (cona - a0);
float sb1 = conb - (conb - b0);
float sa2 = a0 - sa1;
float sb2 = b0 - sb1;
// Multilply a0 * b0 using Dekker's method.
float c11 = a0 * b0;
float c21 = (((sa1 * sb1 - c11) + sa1 * sb2) + sa2 * sb1) + sa2 * sb2;
// Compute a0 * b1 + a1 * b0 (only high-order word is needed).
float c2 = a0 * b1 + a1 * b0;
// Compute (c11, c21) + c2 using Knuth's trick, also adding low-order product.
float t1 = c11 + c2;
float e = t1 - c11;
float t2 = ((c2 - e) + (c11 - (t1 - e))) + c21 + a1 * b1;
// The result is t1 + t2, after normalization.
c0 = e = t1 + t2;
c1 = t2 - (e - t1);
} // dsmul
#else
// Modified double-single mul function by Norbert Juffa, NVIDIA
// uses __fmul_rn() and __fadd_rn() intrinsics which prevent FMAD merging
/* Based on: Guillaume Da Gra�a, David Defour. Implementation of Float-Float
* Operators on Graphics Hardware. RNC'7 pp. 23-32, 2006.
*/
// This function multiplies DS numbers A and B to yield the DS product C.
__device__ inline void dsmul(float &c0, float &c1, const float a0,
const float a1, const float b0, const float b1) {
// This splits dsa(1) and dsb(1) into high-order and low-order words.
float cona = a0 * 8193.0f;
float conb = b0 * 8193.0f;
float sa1 = cona - (cona - a0);
float sb1 = conb - (conb - b0);
float sa2 = a0 - sa1;
float sb2 = b0 - sb1;
// Multilply a0 * b0 using Dekker's method.
float c11 = __fmul_rn(a0, b0);
float c21 = (((sa1 * sb1 - c11) + sa1 * sb2) + sa2 * sb1) + sa2 * sb2;
// Compute a0 * b1 + a1 * b0 (only high-order word is needed).
float c2 = __fmul_rn(a0, b1) + __fmul_rn(a1, b0);
// Compute (c11, c21) + c2 using Knuth's trick, also adding low-order product.
float t1 = c11 + c2;
float e = t1 - c11;
float t2 = ((c2 - e) + (c11 - (t1 - e))) + c21 + __fmul_rn(a1, b1);
// The result is t1 + t2, after normalization.
c0 = e = t1 + t2;
c1 = t2 - (e - t1);
} // dsmul
#endif
// The core Mandelbrot CUDA GPU calculation function
#if 1
// Unrolled version
template <class T>
__device__ inline int CalcMandelbrot(const T xPos, const T yPos,
const T xJParam, const T yJParam,
const int crunch, const bool isJulia) {
T x, y, xx, yy;
int i = crunch;
T xC, yC;
if (isJulia) {
xC = xJParam;
yC = yJParam;
y = yPos;
x = xPos;
yy = y * y;
xx = x * x;
} else {
xC = xPos;
yC = yPos;
y = 0;
x = 0;
yy = 0;
xx = 0;
}
do {
// Iteration 1
if (xx + yy > T(4.0)) return i - 1;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 2
if (xx + yy > T(4.0)) return i - 2;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 3
if (xx + yy > T(4.0)) return i - 3;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 4
if (xx + yy > T(4.0)) return i - 4;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 5
if (xx + yy > T(4.0)) return i - 5;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 6
if (xx + yy > T(4.0)) return i - 6;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 7
if (xx + yy > T(4.0)) return i - 7;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 8
if (xx + yy > T(4.0)) return i - 8;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 9
if (xx + yy > T(4.0)) return i - 9;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 10
if (xx + yy > T(4.0)) return i - 10;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 11
if (xx + yy > T(4.0)) return i - 11;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 12
if (xx + yy > T(4.0)) return i - 12;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 13
if (xx + yy > T(4.0)) return i - 13;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 14
if (xx + yy > T(4.0)) return i - 14;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 15
if (xx + yy > T(4.0)) return i - 15;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 16
if (xx + yy > T(4.0)) return i - 16;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 17
if (xx + yy > T(4.0)) return i - 17;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 18
if (xx + yy > T(4.0)) return i - 18;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 19
if (xx + yy > T(4.0)) return i - 19;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
// Iteration 20
i -= 20;
if ((i <= 0) || (xx + yy > T(4.0))) return i;
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
} while (1);
} // CalcMandelbrot
#else
template <class T>
__device__ inline int CalcMandelbrot(const T xPos, const T yPos,
const T xJParam, const T yJParam,
const int crunch, const isJulia) {
T x, y, xx, yy, xC, yC;
if (isJulia) {
xC = xJParam;
yC = yJParam;
y = yPos;
x = xPos;
yy = y * y;
xx = x * x;
} else {
xC = xPos;
yC = yPos;
y = 0;
x = 0;
yy = 0;
xx = 0;
}
int i = crunch;
while (--i && (xx + yy < T(4.0))) {
y = x * y * T(2.0) + yC;
x = xx - yy + xC;
yy = y * y;
xx = x * x;
}
return i; // i > 0 ? crunch - i : 0;
} // CalcMandelbrot
#endif
// The core Mandelbrot calculation function in double-single precision
__device__ inline int CalcMandelbrotDS(const float xPos0, const float xPos1,
const float yPos0, const float yPos1,
const float xJParam, const float yJParam,
const int crunch, const bool isJulia) {
float xx0, xx1;
float yy0, yy1;
float sum0, sum1;
int i = crunch;
float x0, x1, y0, y1;
float xC0, xC1, yC0, yC1;
if (isJulia) {
xC0 = xJParam;
xC1 = 0;
yC0 = yJParam;
yC1 = 0;
y0 = yPos0; // y = yPos;
y1 = yPos1;
x0 = xPos0; // x = xPos;
x1 = xPos1;
dsmul(yy0, yy1, y0, y1, y0, y1); // yy = y * y;
dsmul(xx0, xx1, x0, x1, x0, x1); // xx = x * x;
} else {
xC0 = xPos0;
xC1 = xPos1;
yC0 = yPos0;
yC1 = yPos1;
y0 = 0; // y = 0 ;
y1 = 0;
x0 = 0; // x = 0 ;
x1 = 0;
yy0 = 0; // yy = 0 ;
yy1 = 0;
xx0 = 0; // xx = 0 ;
xx1 = 0;
}
dsadd(sum0, sum1, xx0, xx1, yy0, yy1); // sum = xx + yy;
while (--i && (sum0 + sum1 < 4.0f)) {
dsmul(y0, y1, x0, x1, y0, y1); // y = x * y * 2.0f + yC; // yC is yPos for
// Mandelbrot and it is yJParam for Julia
dsadd(y0, y1, y0, y1, y0, y1);
dsadd(y0, y1, y0, y1, yC0, yC1);
dssub(x0, x1, xx0, xx1, yy0, yy1); // x = xx - yy + xC; // xC is xPos for
// Mandelbrot and it is xJParam for
// Julia
dsadd(x0, x1, x0, x1, xC0, xC1);
dsmul(yy0, yy1, y0, y1, y0, y1); // yy = y * y;
dsmul(xx0, xx1, x0, x1, x0, x1); // xx = x * x;
dsadd(sum0, sum1, xx0, xx1, yy0, yy1); // sum = xx + yy;
}
return i;
} // CalcMandelbrotDS
// Determine if two pixel colors are within tolerance
__device__ inline int CheckColors(const uchar4 &color0, const uchar4 &color1) {
int x = color1.x - color0.x;
int y = color1.y - color0.y;
int z = color1.z - color0.z;
return (ABS(x) > 10) || (ABS(y) > 10) || (ABS(z) > 10);
} // CheckColors
// Increase the grid size by 1 if the image width or height does not divide
// evenly
// by the thread block dimensions
inline int iDivUp(int a, int b) {
return ((a % b) != 0) ? (a / b + 1) : (a / b);
} // iDivUp
|