1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
////////////////////////////////////////////////////////////////////////////////
// Global types
////////////////////////////////////////////////////////////////////////////////
#include <stdlib.h>
#include <stdio.h>
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <helper_cuda.h>
#include <curand_kernel.h>
#include "MonteCarlo_common.h"
////////////////////////////////////////////////////////////////////////////////
// Helper reduction template
// Please see the "reduction" CUDA Sample for more information
////////////////////////////////////////////////////////////////////////////////
#include "MonteCarlo_reduction.cuh"
////////////////////////////////////////////////////////////////////////////////
// Internal GPU-side data structures
////////////////////////////////////////////////////////////////////////////////
#define MAX_OPTIONS (1024 * 1024)
// Preprocessed input option data
typedef struct {
real S;
real X;
real MuByT;
real VBySqrtT;
} __TOptionData;
////////////////////////////////////////////////////////////////////////////////
// Overloaded shortcut payoff functions for different precision modes
////////////////////////////////////////////////////////////////////////////////
__device__ inline float endCallValue(float S, float X, float r, float MuByT,
float VBySqrtT) {
float callValue = S * __expf(MuByT + VBySqrtT * r) - X;
return (callValue > 0.0F) ? callValue : 0.0F;
}
__device__ inline double endCallValue(double S, double X, double r,
double MuByT, double VBySqrtT) {
double callValue = S * exp(MuByT + VBySqrtT * r) - X;
return (callValue > 0.0) ? callValue : 0.0;
}
#define THREAD_N 256
////////////////////////////////////////////////////////////////////////////////
// This kernel computes the integral over all paths using a single thread block
// per option. It is fastest when the number of thread blocks times the work per
// block is high enough to keep the GPU busy.
////////////////////////////////////////////////////////////////////////////////
static __global__ void MonteCarloOneBlockPerOption(
curandState *__restrict rngStates,
const __TOptionData *__restrict d_OptionData,
__TOptionValue *__restrict d_CallValue, int pathN, int optionN) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
const int SUM_N = THREAD_N;
__shared__ real s_SumCall[SUM_N];
__shared__ real s_Sum2Call[SUM_N];
// determine global thread id
int tid = threadIdx.x + blockIdx.x * blockDim.x;
// Copy random number state to local memory for efficiency
curandState localState = rngStates[tid];
for (int optionIndex = blockIdx.x; optionIndex < optionN;
optionIndex += gridDim.x) {
const real S = d_OptionData[optionIndex].S;
const real X = d_OptionData[optionIndex].X;
const real MuByT = d_OptionData[optionIndex].MuByT;
const real VBySqrtT = d_OptionData[optionIndex].VBySqrtT;
// Cycle through the entire samples array:
// derive end stock price for each path
// accumulate partial integrals into intermediate shared memory buffer
for (int iSum = threadIdx.x; iSum < SUM_N; iSum += blockDim.x) {
__TOptionValue sumCall = {0, 0};
#pragma unroll 8
for (int i = iSum; i < pathN; i += SUM_N) {
real r = curand_normal(&localState);
real callValue = endCallValue(S, X, r, MuByT, VBySqrtT);
sumCall.Expected += callValue;
sumCall.Confidence += callValue * callValue;
}
s_SumCall[iSum] = sumCall.Expected;
s_Sum2Call[iSum] = sumCall.Confidence;
}
// Reduce shared memory accumulators
// and write final result to global memory
cg::sync(cta);
sumReduce<real, SUM_N, THREAD_N>(s_SumCall, s_Sum2Call, cta, tile32,
&d_CallValue[optionIndex]);
}
}
static __global__ void rngSetupStates(curandState *rngState, int device_id) {
// determine global thread id
int tid = threadIdx.x + blockIdx.x * blockDim.x;
// Each threadblock gets different seed,
// Threads within a threadblock get different sequence numbers
curand_init(blockIdx.x + gridDim.x * device_id, threadIdx.x, 0,
&rngState[tid]);
}
////////////////////////////////////////////////////////////////////////////////
// Host-side interface to GPU Monte Carlo
////////////////////////////////////////////////////////////////////////////////
extern "C" void initMonteCarloGPU(TOptionPlan *plan) {
checkCudaErrors(cudaMalloc(&plan->d_OptionData,
sizeof(__TOptionData) * (plan->optionCount)));
checkCudaErrors(cudaMalloc(&plan->d_CallValue,
sizeof(__TOptionValue) * (plan->optionCount)));
checkCudaErrors(cudaMallocHost(&plan->h_OptionData,
sizeof(__TOptionData) * (plan->optionCount)));
// Allocate internal device memory
checkCudaErrors(cudaMallocHost(&plan->h_CallValue,
sizeof(__TOptionValue) * (plan->optionCount)));
// Allocate states for pseudo random number generators
checkCudaErrors(cudaMalloc((void **)&plan->rngStates,
plan->gridSize * THREAD_N * sizeof(curandState)));
checkCudaErrors(cudaMemset(plan->rngStates, 0,
plan->gridSize * THREAD_N * sizeof(curandState)));
// place each device pathN random numbers apart on the random number sequence
rngSetupStates<<<plan->gridSize, THREAD_N>>>(plan->rngStates, plan->device);
getLastCudaError("rngSetupStates kernel failed.\n");
}
// Compute statistics and deallocate internal device memory
extern "C" void closeMonteCarloGPU(TOptionPlan *plan) {
for (int i = 0; i < plan->optionCount; i++) {
const double RT = plan->optionData[i].R * plan->optionData[i].T;
const double sum = plan->h_CallValue[i].Expected;
const double sum2 = plan->h_CallValue[i].Confidence;
const double pathN = plan->pathN;
// Derive average from the total sum and discount by riskfree rate
plan->callValue[i].Expected = (float)(exp(-RT) * sum / pathN);
// Standard deviation
double stdDev = sqrt((pathN * sum2 - sum * sum) / (pathN * (pathN - 1)));
// Confidence width; in 95% of all cases theoretical value lies within these
// borders
plan->callValue[i].Confidence =
(float)(exp(-RT) * 1.96 * stdDev / sqrt(pathN));
}
checkCudaErrors(cudaFree(plan->rngStates));
checkCudaErrors(cudaFreeHost(plan->h_CallValue));
checkCudaErrors(cudaFreeHost(plan->h_OptionData));
checkCudaErrors(cudaFree(plan->d_CallValue));
checkCudaErrors(cudaFree(plan->d_OptionData));
}
// Main computations
extern "C" void MonteCarloGPU(TOptionPlan *plan, cudaStream_t stream) {
__TOptionValue *h_CallValue = plan->h_CallValue;
if (plan->optionCount <= 0 || plan->optionCount > MAX_OPTIONS) {
printf("MonteCarloGPU(): bad option count.\n");
return;
}
__TOptionData *h_OptionData = (__TOptionData *)plan->h_OptionData;
for (int i = 0; i < plan->optionCount; i++) {
const double T = plan->optionData[i].T;
const double R = plan->optionData[i].R;
const double V = plan->optionData[i].V;
const double MuByT = (R - 0.5 * V * V) * T;
const double VBySqrtT = V * sqrt(T);
h_OptionData[i].S = (real)plan->optionData[i].S;
h_OptionData[i].X = (real)plan->optionData[i].X;
h_OptionData[i].MuByT = (real)MuByT;
h_OptionData[i].VBySqrtT = (real)VBySqrtT;
}
checkCudaErrors(cudaMemcpyAsync(plan->d_OptionData, h_OptionData,
plan->optionCount * sizeof(__TOptionData),
cudaMemcpyHostToDevice, stream));
MonteCarloOneBlockPerOption<<<plan->gridSize, THREAD_N, 0, stream>>>(
plan->rngStates, (__TOptionData *)(plan->d_OptionData),
(__TOptionValue *)(plan->d_CallValue), plan->pathN, plan->optionCount);
getLastCudaError("MonteCarloOneBlockPerOption() execution failed\n");
checkCudaErrors(cudaMemcpyAsync(h_CallValue, plan->d_CallValue,
plan->optionCount * sizeof(__TOptionValue),
cudaMemcpyDeviceToHost, stream));
// cudaDeviceSynchronize();
}
|