1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Portions Copyright (c) 2009 Mike Giles, Oxford University. All rights
* reserved.
* Portions Copyright (c) 2008 Frances Y. Kuo and Stephen Joe. All rights
* reserved.
*
* Sobol Quasi-random Number Generator example
*
* Based on CUDA code submitted by Mike Giles, Oxford University, United Kingdom
* http://people.maths.ox.ac.uk/~gilesm/
*
* and C code developed by Stephen Joe, University of Waikato, New Zealand
* and Frances Kuo, University of New South Wales, Australia
* http://web.maths.unsw.edu.au/~fkuo/sobol/
*
* For theoretical background see:
*
* P. Bratley and B.L. Fox.
* Implementing Sobol's quasirandom sequence generator
* http://portal.acm.org/citation.cfm?id=42288
* ACM Trans. on Math. Software, 14(1):88-100, 1988
*
* S. Joe and F. Kuo.
* Remark on algorithm 659: implementing Sobol's quasirandom sequence generator.
* http://portal.acm.org/citation.cfm?id=641879
* ACM Trans. on Math. Software, 29(1):49-57, 2003
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "sobol.h"
#include "sobol_gold.h"
#include "sobol_primitives.h"
#define k_2powneg32 2.3283064E-10F
// Windows does not provide ffs (find first set) so here is a
// fairly simple implementation.
// WIN32 is defined on 32 and 64 bit Windows
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
int ffs(const unsigned int &i) {
unsigned int v = i;
unsigned int count;
if (!v) {
count = 0;
} else {
count = 2;
if ((v & 0xffff) == 0) {
v >>= 16;
count += 16;
}
if ((v & 0xff) == 0) {
v >>= 8;
count += 8;
}
if ((v & 0xf) == 0) {
v >>= 4;
count += 4;
}
if ((v & 0x3) == 0) {
v >>= 2;
count += 2;
}
count -= v & 0x1;
}
return count;
}
#endif
// Create the direction numbers, based on the primitive polynomials.
void initSobolDirectionVectors(int n_dimensions, unsigned int *directions) {
unsigned int *v = directions;
for (int dim = 0; dim < n_dimensions; dim++) {
// First dimension is a special case
if (dim == 0) {
for (int i = 0; i < n_directions; i++) {
// All m's are 1
v[i] = 1 << (31 - i);
}
} else {
int d = sobol_primitives[dim].degree;
// The first direction numbers (up to the degree of the polynomial)
// are simply v[i] = m[i] / 2^i (stored in Q0.32 format)
for (int i = 0; i < d; i++) {
v[i] = sobol_primitives[dim].m[i] << (31 - i);
}
// The remaining direction numbers are computed as described in
// the Bratley and Fox paper.
// v[i] = a[1]v[i-1] ^ a[2]v[i-2] ^ ... ^ a[v-1]v[i-d+1] ^ v[i-d] ^
// v[i-d]/2^d
for (int i = d; i < n_directions; i++) {
// First do the v[i-d] ^ v[i-d]/2^d part
v[i] = v[i - d] ^ (v[i - d] >> d);
// Now do the a[1]v[i-1] ^ a[2]v[i-2] ^ ... part
// Note that the coefficients a[] are zero or one and for compactness in
// the input tables they are stored as bits of a single integer. To
// extract the relevant bit we use right shift and mask with 1.
// For example, for a 10 degree polynomial there are ten useful bits in
// a, so to get a[2] we need to right shift 7 times (to get the 8th bit
// into the LSB) and then mask with 1.
for (int j = 1; j < d; j++) {
v[i] ^= (((sobol_primitives[dim].a >> (d - 1 - j)) & 1) * v[i - j]);
}
}
}
v += n_directions;
}
}
// Reference model for generating Sobol numbers on the host
void sobolCPU(int n_vectors, int n_dimensions, unsigned int *directions,
float *output) {
unsigned int *v = directions;
for (int d = 0; d < n_dimensions; d++) {
unsigned int X = 0;
// x[0] is zero (in all dimensions)
output[n_vectors * d] = 0.0;
for (int i = 1; i < n_vectors; i++) {
// x[i] = x[i-1] ^ v[c]
// where c is the index of the rightmost zero bit in i
// minus 1 (since C arrays count from zero)
// In the Bratley and Fox paper this is equation (**)
X ^= v[ffs(~(i - 1)) - 1];
output[i + n_vectors * d] = (float)X * k_2powneg32;
}
v += n_directions;
}
}
|