File: binomialOptions_gpu.cpp

package info (click to toggle)
nvidia-cuda-samples 12.4.1~dfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 313,216 kB
  • sloc: cpp: 82,042; makefile: 53,971; xml: 15,381; ansic: 8,630; sh: 91; python: 74
file content (127 lines) | stat: -rw-r--r-- 4,788 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

////////////////////////////////////////////////////////////////////////////////
// Global types and parameters
////////////////////////////////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>
#include <cmath>

#include <helper_cuda.h>
#include <nvrtc_helper.h>
#include <cuda_runtime.h>

#include "binomialOptions_common.h"

#include "common_gpu_header.h"
#include "realtype.h"

// Preprocessed input option data
typedef struct {
  real S;
  real X;
  real vDt;
  real puByDf;
  real pdByDf;

} __TOptionData;

static bool moduleLoaded = false;
char *cubin, *kernel_file;
size_t cubinSize;
CUmodule module;

////////////////////////////////////////////////////////////////////////////////
// Host-side interface to GPU binomialOptions
////////////////////////////////////////////////////////////////////////////////

extern "C" void binomialOptionsGPU(real *callValue, TOptionData *optionData,
                                   int optN, int argc, char **argv) {
  if (!moduleLoaded) {
    kernel_file = sdkFindFilePath("binomialOptions_kernel.cu", argv[0]);
    compileFileToCUBIN(kernel_file, argc, argv, &cubin, &cubinSize, 0);
    module = loadCUBIN(cubin, argc, argv);
    moduleLoaded = true;
  }

  __TOptionData h_OptionData[MAX_OPTIONS];

  for (int i = 0; i < optN; i++) {
    const real T = optionData[i].T;
    const real R = optionData[i].R;
    const real V = optionData[i].V;

    const real dt = T / (real)NUM_STEPS;
    const real vDt = V * sqrt(dt);
    const real rDt = R * dt;
    // Per-step interest and discount factors
    const real If = exp(rDt);
    const real Df = exp(-rDt);
    // Values and pseudoprobabilities of upward and downward moves
    const real u = exp(vDt);
    const real d = exp(-vDt);
    const real pu = (If - d) / (u - d);
    const real pd = (real)1.0 - pu;
    const real puByDf = pu * Df;
    const real pdByDf = pd * Df;

    h_OptionData[i].S = (real)optionData[i].S;
    h_OptionData[i].X = (real)optionData[i].X;
    h_OptionData[i].vDt = (real)vDt;
    h_OptionData[i].puByDf = (real)puByDf;
    h_OptionData[i].pdByDf = (real)pdByDf;
  }

  CUfunction kernel_addr;
  checkCudaErrors(
      cuModuleGetFunction(&kernel_addr, module, "binomialOptionsKernel"));

  CUdeviceptr d_OptionData;
  checkCudaErrors(
      cuModuleGetGlobal(&d_OptionData, NULL, module, "d_OptionData"));
  checkCudaErrors(
      cuMemcpyHtoD(d_OptionData, h_OptionData, optN * sizeof(__TOptionData)));

  dim3 cudaBlockSize(128, 1, 1);
  dim3 cudaGridSize(optN, 1, 1);

  checkCudaErrors(cuLaunchKernel(kernel_addr, cudaGridSize.x, cudaGridSize.y,
                                 cudaGridSize.z, /* grid dim */
                                 cudaBlockSize.x, cudaBlockSize.y,
                                 cudaBlockSize.z, /* block dim */
                                 0, 0,            /* shared mem, stream */
                                 NULL,            /* arguments */
                                 0));

  checkCudaErrors(cuCtxSynchronize());

  CUdeviceptr d_CallValue;
  checkCudaErrors(cuModuleGetGlobal(&d_CallValue, NULL, module, "d_CallValue"));
  checkCudaErrors(cuMemcpyDtoH(callValue, d_CallValue, optN * sizeof(real)));
}