File: convolutionFFT2D.cuh

package info (click to toggle)
nvidia-cuda-samples 12.4.1~dfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 313,216 kB
  • sloc: cpp: 82,042; makefile: 53,971; xml: 15,381; ansic: 8,630; sh: 91; python: 74
file content (421 lines) | stat: -rw-r--r-- 13,474 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#define USE_TEXTURE 1
#define POWER_OF_TWO 1

#if (USE_TEXTURE)
#define LOAD_FLOAT(i) tex1Dfetch<float>(texFloat, i)
#define SET_FLOAT_BASE
#else
#define LOAD_FLOAT(i) d_Src[i]
#define SET_FLOAT_BASE
#endif

////////////////////////////////////////////////////////////////////////////////
/// Position convolution kernel center at (0, 0) in the image
////////////////////////////////////////////////////////////////////////////////
__global__ void padKernel_kernel(float *d_Dst, float *d_Src, int fftH, int fftW,
                                 int kernelH, int kernelW, int kernelY,
                                 int kernelX
#if (USE_TEXTURE)
                                 ,
                                 cudaTextureObject_t texFloat
#endif
                                 ) {
  const int y = blockDim.y * blockIdx.y + threadIdx.y;
  const int x = blockDim.x * blockIdx.x + threadIdx.x;

  if (y < kernelH && x < kernelW) {
    int ky = y - kernelY;

    if (ky < 0) {
      ky += fftH;
    }

    int kx = x - kernelX;

    if (kx < 0) {
      kx += fftW;
    }

    d_Dst[ky * fftW + kx] = LOAD_FLOAT(y * kernelW + x);
  }
}

////////////////////////////////////////////////////////////////////////////////
// Prepare data for "pad to border" addressing mode
////////////////////////////////////////////////////////////////////////////////
__global__ void padDataClampToBorder_kernel(float *d_Dst, float *d_Src,
                                            int fftH, int fftW, int dataH,
                                            int dataW, int kernelH, int kernelW,
                                            int kernelY, int kernelX
#if (USE_TEXTURE)
                                            ,
                                            cudaTextureObject_t texFloat
#endif
                                            ) {
  const int y = blockDim.y * blockIdx.y + threadIdx.y;
  const int x = blockDim.x * blockIdx.x + threadIdx.x;
  const int borderH = dataH + kernelY;
  const int borderW = dataW + kernelX;

  if (y < fftH && x < fftW) {
    int dy, dx;

    if (y < dataH) {
      dy = y;
    }

    if (x < dataW) {
      dx = x;
    }

    if (y >= dataH && y < borderH) {
      dy = dataH - 1;
    }

    if (x >= dataW && x < borderW) {
      dx = dataW - 1;
    }

    if (y >= borderH) {
      dy = 0;
    }

    if (x >= borderW) {
      dx = 0;
    }

    d_Dst[y * fftW + x] = LOAD_FLOAT(dy * dataW + dx);
  }
}

////////////////////////////////////////////////////////////////////////////////
// Modulate Fourier image of padded data by Fourier image of padded kernel
// and normalize by FFT size
////////////////////////////////////////////////////////////////////////////////
inline __device__ void mulAndScale(fComplex &a, const fComplex &b,
                                   const float &c) {
  fComplex t = {c * (a.x * b.x - a.y * b.y), c * (a.y * b.x + a.x * b.y)};
  a = t;
}

__global__ void modulateAndNormalize_kernel(fComplex *d_Dst, fComplex *d_Src,
                                            int dataSize, float c) {
  const int i = blockDim.x * blockIdx.x + threadIdx.x;

  if (i >= dataSize) {
    return;
  }

  fComplex a = d_Src[i];
  fComplex b = d_Dst[i];

  mulAndScale(a, b, c);

  d_Dst[i] = a;
}

////////////////////////////////////////////////////////////////////////////////
// 2D R2C / C2R post/preprocessing kernels
////////////////////////////////////////////////////////////////////////////////
#if (USE_TEXTURE)
#define LOAD_FCOMPLEX(i) tex1Dfetch<fComplex>(texComplex, i)
#define LOAD_FCOMPLEX_A(i) tex1Dfetch<fComplex>(texComplexA, i)
#define LOAD_FCOMPLEX_B(i) tex1Dfetch<fComplex>(texComplexB, i)

#define SET_FCOMPLEX_BASE
#define SET_FCOMPLEX_BASE_A
#define SET_FCOMPLEX_BASE_B
#else
#define LOAD_FCOMPLEX(i) d_Src[i]
#define LOAD_FCOMPLEX_A(i) d_SrcA[i]
#define LOAD_FCOMPLEX_B(i) d_SrcB[i]

#define SET_FCOMPLEX_BASE
#define SET_FCOMPLEX_BASE_A
#define SET_FCOMPLEX_BASE_B
#endif

inline __device__ void spPostprocessC2C(fComplex &D1, fComplex &D2,
                                        const fComplex &twiddle) {
  float A1 = 0.5f * (D1.x + D2.x);
  float B1 = 0.5f * (D1.y - D2.y);
  float A2 = 0.5f * (D1.y + D2.y);
  float B2 = 0.5f * (D1.x - D2.x);

  D1.x = A1 + (A2 * twiddle.x + B2 * twiddle.y);
  D1.y = (A2 * twiddle.y - B2 * twiddle.x) + B1;
  D2.x = A1 - (A2 * twiddle.x + B2 * twiddle.y);
  D2.y = (A2 * twiddle.y - B2 * twiddle.x) - B1;
}

// Premultiply by 2 to account for 1.0 / (DZ * DY * DX) normalization
inline __device__ void spPreprocessC2C(fComplex &D1, fComplex &D2,
                                       const fComplex &twiddle) {
  float A1 = /* 0.5f * */ (D1.x + D2.x);
  float B1 = /* 0.5f * */ (D1.y - D2.y);
  float A2 = /* 0.5f * */ (D1.y + D2.y);
  float B2 = /* 0.5f * */ (D1.x - D2.x);

  D1.x = A1 - (A2 * twiddle.x - B2 * twiddle.y);
  D1.y = (B2 * twiddle.x + A2 * twiddle.y) + B1;
  D2.x = A1 + (A2 * twiddle.x - B2 * twiddle.y);
  D2.y = (B2 * twiddle.x + A2 * twiddle.y) - B1;
}

inline __device__ void getTwiddle(fComplex &twiddle, float phase) {
  __sincosf(phase, &twiddle.y, &twiddle.x);
}

inline __device__ uint mod(uint a, uint DA) {
  //(DA - a) % DA, assuming a <= DA
  return a ? (DA - a) : a;
}

static inline uint factorRadix2(uint &log2N, uint n) {
  if (!n) {
    log2N = 0;
    return 0;
  } else {
    for (log2N = 0; n % 2 == 0; n /= 2, log2N++)
      ;

    return n;
  }
}

inline __device__ void udivmod(uint &dividend, uint divisor, uint &rem) {
#if (!POWER_OF_TWO)
  rem = dividend % divisor;
  dividend /= divisor;
#else
  rem = dividend & (divisor - 1);
  dividend >>= (__ffs(divisor) - 1);
#endif
}

__global__ void spPostprocess2D_kernel(fComplex *d_Dst, fComplex *d_Src,
                                       uint DY, uint DX, uint threadCount,
                                       uint padding, float phaseBase
#if (USE_TEXTURE)
                                       ,
                                       cudaTextureObject_t texComplex
#endif
                                       ) {
  const uint threadId = blockIdx.x * blockDim.x + threadIdx.x;

  if (threadId >= threadCount) {
    return;
  }

  uint x, y, i = threadId;
  udivmod(i, DX / 2, x);
  udivmod(i, DY, y);

  // Avoid overwrites in columns DX / 2 by different threads
  if ((x == 0) && (y > DY / 2)) {
    return;
  }

  const uint srcOffset = i * DY * DX;
  const uint dstOffset = i * DY * (DX + padding);

  // Process x = [0 .. DX / 2 - 1] U [DX / 2 + 1 .. DX]
  {
    const uint loadPos1 = srcOffset + y * DX + x;
    const uint loadPos2 = srcOffset + mod(y, DY) * DX + mod(x, DX);
    const uint storePos1 = dstOffset + y * (DX + padding) + x;
    const uint storePos2 = dstOffset + mod(y, DY) * (DX + padding) + (DX - x);

    fComplex D1 = LOAD_FCOMPLEX(loadPos1);
    fComplex D2 = LOAD_FCOMPLEX(loadPos2);

    fComplex twiddle;
    getTwiddle(twiddle, phaseBase * (float)x);
    spPostprocessC2C(D1, D2, twiddle);

    d_Dst[storePos1] = D1;
    d_Dst[storePos2] = D2;
  }

  // Process x = DX / 2
  if (x == 0) {
    const uint loadPos1 = srcOffset + y * DX + DX / 2;
    const uint loadPos2 = srcOffset + mod(y, DY) * DX + DX / 2;
    const uint storePos1 = dstOffset + y * (DX + padding) + DX / 2;
    const uint storePos2 = dstOffset + mod(y, DY) * (DX + padding) + DX / 2;

    fComplex D1 = LOAD_FCOMPLEX(loadPos1);
    fComplex D2 = LOAD_FCOMPLEX(loadPos2);

    // twiddle = getTwiddle(phaseBase * (DX / 2)) = exp(dir * j * PI / 2)
    fComplex twiddle = {0, (phaseBase > 0) ? 1.0f : -1.0f};
    spPostprocessC2C(D1, D2, twiddle);

    d_Dst[storePos1] = D1;
    d_Dst[storePos2] = D2;
  }
}

__global__ void spPreprocess2D_kernel(fComplex *d_Dst, fComplex *d_Src, uint DY,
                                      uint DX, uint threadCount, uint padding,
                                      float phaseBase
#if (USE_TEXTURE)
                                      ,
                                      cudaTextureObject_t texComplex
#endif
                                      ) {
  const uint threadId = blockIdx.x * blockDim.x + threadIdx.x;

  if (threadId >= threadCount) {
    return;
  }

  uint x, y, i = threadId;
  udivmod(i, DX / 2, x);
  udivmod(i, DY, y);

  // Avoid overwrites in columns 0 and DX / 2 by different threads (lower and
  // upper halves)
  if ((x == 0) && (y > DY / 2)) {
    return;
  }

  const uint srcOffset = i * DY * (DX + padding);
  const uint dstOffset = i * DY * DX;

  // Process x = [0 .. DX / 2 - 1] U [DX / 2 + 1 .. DX]
  {
    const uint loadPos1 = srcOffset + y * (DX + padding) + x;
    const uint loadPos2 = srcOffset + mod(y, DY) * (DX + padding) + (DX - x);
    const uint storePos1 = dstOffset + y * DX + x;
    const uint storePos2 = dstOffset + mod(y, DY) * DX + mod(x, DX);

    fComplex D1 = LOAD_FCOMPLEX(loadPos1);
    fComplex D2 = LOAD_FCOMPLEX(loadPos2);

    fComplex twiddle;
    getTwiddle(twiddle, phaseBase * (float)x);
    spPreprocessC2C(D1, D2, twiddle);

    d_Dst[storePos1] = D1;
    d_Dst[storePos2] = D2;
  }

  // Process x = DX / 2
  if (x == 0) {
    const uint loadPos1 = srcOffset + y * (DX + padding) + DX / 2;
    const uint loadPos2 = srcOffset + mod(y, DY) * (DX + padding) + DX / 2;
    const uint storePos1 = dstOffset + y * DX + DX / 2;
    const uint storePos2 = dstOffset + mod(y, DY) * DX + DX / 2;

    fComplex D1 = LOAD_FCOMPLEX(loadPos1);
    fComplex D2 = LOAD_FCOMPLEX(loadPos2);

    // twiddle = getTwiddle(phaseBase * (DX / 2)) = exp(-dir * j * PI / 2)
    fComplex twiddle = {0, (phaseBase > 0) ? 1.0f : -1.0f};
    spPreprocessC2C(D1, D2, twiddle);

    d_Dst[storePos1] = D1;
    d_Dst[storePos2] = D2;
  }
}

////////////////////////////////////////////////////////////////////////////////
// Combined spPostprocess2D + modulateAndNormalize + spPreprocess2D
////////////////////////////////////////////////////////////////////////////////
__global__ void spProcess2D_kernel(fComplex *d_Dst, fComplex *d_SrcA,
                                   fComplex *d_SrcB, uint DY, uint DX,
                                   uint threadCount, float phaseBase, float c
#if (USE_TEXTURE)
                                   ,
                                   cudaTextureObject_t texComplexA,
                                   cudaTextureObject_t texComplexB
#endif
                                   ) {
  const uint threadId = blockIdx.x * blockDim.x + threadIdx.x;

  if (threadId >= threadCount) {
    return;
  }

  uint x, y, i = threadId;
  udivmod(i, DX, x);
  udivmod(i, DY / 2, y);

  const uint offset = i * DY * DX;

  // Avoid overwrites in rows 0 and DY / 2 by different threads (left and right
  // halves) Otherwise correctness for in-place transformations is affected
  if ((y == 0) && (x > DX / 2)) {
    return;
  }

  fComplex twiddle;

  // Process y = [0 .. DY / 2 - 1] U [DY - (DY / 2) + 1 .. DY - 1]
  {
    const uint pos1 = offset + y * DX + x;
    const uint pos2 = offset + mod(y, DY) * DX + mod(x, DX);

    fComplex D1 = LOAD_FCOMPLEX_A(pos1);
    fComplex D2 = LOAD_FCOMPLEX_A(pos2);
    fComplex K1 = LOAD_FCOMPLEX_B(pos1);
    fComplex K2 = LOAD_FCOMPLEX_B(pos2);
    getTwiddle(twiddle, phaseBase * (float)x);

    spPostprocessC2C(D1, D2, twiddle);
    spPostprocessC2C(K1, K2, twiddle);
    mulAndScale(D1, K1, c);
    mulAndScale(D2, K2, c);
    spPreprocessC2C(D1, D2, twiddle);

    d_Dst[pos1] = D1;
    d_Dst[pos2] = D2;
  }

  if (y == 0) {
    const uint pos1 = offset + (DY / 2) * DX + x;
    const uint pos2 = offset + (DY / 2) * DX + mod(x, DX);

    fComplex D1 = LOAD_FCOMPLEX_A(pos1);
    fComplex D2 = LOAD_FCOMPLEX_A(pos2);
    fComplex K1 = LOAD_FCOMPLEX_B(pos1);
    fComplex K2 = LOAD_FCOMPLEX_B(pos2);

    spPostprocessC2C(D1, D2, twiddle);
    spPostprocessC2C(K1, K2, twiddle);
    mulAndScale(D1, K1, c);
    mulAndScale(D2, K2, c);
    spPreprocessC2C(D1, D2, twiddle);

    d_Dst[pos1] = D1;
    d_Dst[pos2] = D2;
  }
}