1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Utilities and system includes
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <helper_functions.h>
#include <helper_cuda.h>
#include <helper_math.h>
#include <float.h> // for FLT_MAX
#include "CudaMath.h"
#include "dds.h"
#include "permutations.h"
// Definitions
#define INPUT_IMAGE "teapot512_std.ppm"
#define REFERENCE_IMAGE "teapot512_ref.dds"
#define ERROR_THRESHOLD 0.02f
#define NUM_THREADS 64 // Number of threads per block.
#define __debugsync()
template <class T>
__device__ inline void swap(T &a, T &b) {
T tmp = a;
a = b;
b = tmp;
}
//__constant__ float3 kColorMetric = { 0.2126f, 0.7152f, 0.0722f };
__constant__ float3 kColorMetric = {1.0f, 1.0f, 1.0f};
////////////////////////////////////////////////////////////////////////////////
// Sort colors
////////////////////////////////////////////////////////////////////////////////
__device__ void sortColors(const float *values, int *ranks,
cg::thread_group tile) {
const int tid = threadIdx.x;
int rank = 0;
#pragma unroll
for (int i = 0; i < 16; i++) {
rank += (values[i] < values[tid]);
}
ranks[tid] = rank;
cg::sync(tile);
// Resolve elements with the same index.
for (int i = 0; i < 15; i++) {
if (tid > i && ranks[tid] == ranks[i]) {
++ranks[tid];
}
cg::sync(tile);
}
}
////////////////////////////////////////////////////////////////////////////////
// Load color block to shared mem
////////////////////////////////////////////////////////////////////////////////
__device__ void loadColorBlock(const uint *image, float3 colors[16],
float3 sums[16], int xrefs[16], int blockOffset,
cg::thread_block cta) {
const int bid = blockIdx.x + blockOffset;
const int idx = threadIdx.x;
__shared__ float dps[16];
float3 tmp;
cg::thread_group tile = cg::tiled_partition(cta, 16);
if (idx < 16) {
// Read color and copy to shared mem.
uint c = image[(bid)*16 + idx];
colors[idx].x = ((c >> 0) & 0xFF) * (1.0f / 255.0f);
colors[idx].y = ((c >> 8) & 0xFF) * (1.0f / 255.0f);
colors[idx].z = ((c >> 16) & 0xFF) * (1.0f / 255.0f);
cg::sync(tile);
// Sort colors along the best fit line.
colorSums(colors, sums, tile);
cg::sync(tile);
float3 axis = bestFitLine(colors, sums[0], tile);
cg::sync(tile);
dps[idx] = dot(colors[idx], axis);
cg::sync(tile);
sortColors(dps, xrefs, tile);
cg::sync(tile);
tmp = colors[idx];
cg::sync(tile);
colors[xrefs[idx]] = tmp;
}
}
////////////////////////////////////////////////////////////////////////////////
// Round color to RGB565 and expand
////////////////////////////////////////////////////////////////////////////////
inline __device__ float3 roundAndExpand(float3 v, ushort *w) {
v.x = rintf(__saturatef(v.x) * 31.0f);
v.y = rintf(__saturatef(v.y) * 63.0f);
v.z = rintf(__saturatef(v.z) * 31.0f);
*w = ((ushort)v.x << 11) | ((ushort)v.y << 5) | (ushort)v.z;
v.x *= 0.03227752766457f; // approximate integer bit expansion.
v.y *= 0.01583151765563f;
v.z *= 0.03227752766457f;
return v;
}
__constant__ float alphaTable4[4] = {9.0f, 0.0f, 6.0f, 3.0f};
__constant__ float alphaTable3[4] = {4.0f, 0.0f, 2.0f, 2.0f};
__constant__ const int prods4[4] = {0x090000, 0x000900, 0x040102, 0x010402};
__constant__ const int prods3[4] = {0x040000, 0x000400, 0x040101, 0x010401};
#define USE_TABLES 1
////////////////////////////////////////////////////////////////////////////////
// Evaluate permutations
////////////////////////////////////////////////////////////////////////////////
static __device__ float evalPermutation4(const float3 *colors, uint permutation,
ushort *start, ushort *end,
float3 color_sum) {
// Compute endpoints using least squares.
#if USE_TABLES
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
int akku = 0;
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++) {
const uint bits = permutation >> (2 * i);
alphax_sum += alphaTable4[bits & 3] * colors[i];
akku += prods4[bits & 3];
}
float alpha2_sum = float(akku >> 16);
float beta2_sum = float((akku >> 8) & 0xff);
float alphabeta_sum = float((akku >> 0) & 0xff);
float3 betax_sum = (9.0f * color_sum) - alphax_sum;
#else
float alpha2_sum = 0.0f;
float beta2_sum = 0.0f;
float alphabeta_sum = 0.0f;
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++) {
const uint bits = permutation >> (2 * i);
float beta = (bits & 1);
if (bits & 2) {
beta = (1 + beta) * (1.0f / 3.0f);
}
float alpha = 1.0f - beta;
alpha2_sum += alpha * alpha;
beta2_sum += beta * beta;
alphabeta_sum += alpha * beta;
alphax_sum += alpha * colors[i];
}
float3 betax_sum = color_sum - alphax_sum;
#endif
// alpha2, beta2, alphabeta and factor could be precomputed for each
// permutation, but it's faster to recompute them.
const float factor =
1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum +
2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return (0.111111111111f) * dot(e, kColorMetric);
}
static __device__ float evalPermutation3(const float3 *colors, uint permutation,
ushort *start, ushort *end,
float3 color_sum) {
// Compute endpoints using least squares.
#if USE_TABLES
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
int akku = 0;
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++) {
const uint bits = permutation >> (2 * i);
alphax_sum += alphaTable3[bits & 3] * colors[i];
akku += prods3[bits & 3];
}
float alpha2_sum = float(akku >> 16);
float beta2_sum = float((akku >> 8) & 0xff);
float alphabeta_sum = float((akku >> 0) & 0xff);
float3 betax_sum = (4.0f * color_sum) - alphax_sum;
#else
float alpha2_sum = 0.0f;
float beta2_sum = 0.0f;
float alphabeta_sum = 0.0f;
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++) {
const uint bits = permutation >> (2 * i);
float beta = (bits & 1);
if (bits & 2) {
beta = 0.5f;
}
float alpha = 1.0f - beta;
alpha2_sum += alpha * alpha;
beta2_sum += beta * beta;
alphabeta_sum += alpha * beta;
alphax_sum += alpha * colors[i];
}
float3 betax_sum = color_sum - alphax_sum;
#endif
const float factor =
1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum +
2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return (0.25f) * dot(e, kColorMetric);
}
__device__ void evalAllPermutations(const float3 *colors,
const uint *permutations, ushort &bestStart,
ushort &bestEnd, uint &bestPermutation,
float *errors, float3 color_sum,
cg::thread_block cta) {
const int idx = threadIdx.x;
float bestError = FLT_MAX;
__shared__ uint s_permutations[160];
for (int i = 0; i < 16; i++) {
int pidx = idx + NUM_THREADS * i;
if (pidx >= 992) {
break;
}
ushort start, end;
uint permutation = permutations[pidx];
if (pidx < 160) {
s_permutations[pidx] = permutation;
}
float error =
evalPermutation4(colors, permutation, &start, &end, color_sum);
if (error < bestError) {
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
}
}
if (bestStart < bestEnd) {
swap(bestEnd, bestStart);
bestPermutation ^= 0x55555555; // Flip indices.
}
cg::sync(cta); // Sync here to ensure s_permutations is valid going forward
for (int i = 0; i < 3; i++) {
int pidx = idx + NUM_THREADS * i;
if (pidx >= 160) {
break;
}
ushort start, end;
uint permutation = s_permutations[pidx];
float error =
evalPermutation3(colors, permutation, &start, &end, color_sum);
if (error < bestError) {
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
if (bestStart > bestEnd) {
swap(bestEnd, bestStart);
bestPermutation ^=
(~bestPermutation >> 1) & 0x55555555; // Flip indices.
}
}
}
errors[idx] = bestError;
}
////////////////////////////////////////////////////////////////////////////////
// Find index with minimum error
////////////////////////////////////////////////////////////////////////////////
__device__ int findMinError(float *errors, cg::thread_block cta) {
const int idx = threadIdx.x;
__shared__ int indices[NUM_THREADS];
indices[idx] = idx;
cg::sync(cta);
for (int d = NUM_THREADS / 2; d > 0; d >>= 1) {
float err0 = errors[idx];
float err1 = (idx + d) < NUM_THREADS ? errors[idx + d] : FLT_MAX;
int index1 = (idx + d) < NUM_THREADS ? indices[idx + d] : 0;
cg::sync(cta);
if (err1 < err0) {
errors[idx] = err1;
indices[idx] = index1;
}
cg::sync(cta);
}
return indices[0];
}
////////////////////////////////////////////////////////////////////////////////
// Save DXT block
////////////////////////////////////////////////////////////////////////////////
__device__ void saveBlockDXT1(ushort start, ushort end, uint permutation,
int xrefs[16], uint2 *result, int blockOffset) {
const int bid = blockIdx.x + blockOffset;
if (start == end) {
permutation = 0;
}
// Reorder permutation.
uint indices = 0;
for (int i = 0; i < 16; i++) {
int ref = xrefs[i];
indices |= ((permutation >> (2 * ref)) & 3) << (2 * i);
}
// Write endpoints.
result[bid].x = (end << 16) | start;
// Write palette indices.
result[bid].y = indices;
}
////////////////////////////////////////////////////////////////////////////////
// Compress color block
////////////////////////////////////////////////////////////////////////////////
__global__ void compress(const uint *permutations, const uint *image,
uint2 *result, int blockOffset) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
const int idx = threadIdx.x;
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
loadColorBlock(image, colors, sums, xrefs, blockOffset, cta);
cg::sync(cta);
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalAllPermutations(colors, permutations, bestStart, bestEnd, bestPermutation,
errors, sums[0], cta);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors, cta);
cg::sync(cta);
// Only write the result of the winner thread.
if (idx == minIdx) {
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result,
blockOffset);
}
}
// Helper structs and functions to validate the output of the compressor.
// We cannot simply do a bitwise compare, because different compilers produce
// different
// results for different targets due to floating point arithmetic.
union Color32 {
struct {
unsigned char b, g, r, a;
};
unsigned int u;
};
union Color16 {
struct {
unsigned short b : 5;
unsigned short g : 6;
unsigned short r : 5;
};
unsigned short u;
};
struct BlockDXT1 {
Color16 col0;
Color16 col1;
union {
unsigned char row[4];
unsigned int indices;
};
void decompress(Color32 colors[16]) const;
};
void BlockDXT1::decompress(Color32 *colors) const {
Color32 palette[4];
// Does bit expansion before interpolation.
palette[0].b = (col0.b << 3) | (col0.b >> 2);
palette[0].g = (col0.g << 2) | (col0.g >> 4);
palette[0].r = (col0.r << 3) | (col0.r >> 2);
palette[0].a = 0xFF;
palette[1].r = (col1.r << 3) | (col1.r >> 2);
palette[1].g = (col1.g << 2) | (col1.g >> 4);
palette[1].b = (col1.b << 3) | (col1.b >> 2);
palette[1].a = 0xFF;
if (col0.u > col1.u) {
// Four-color block: derive the other two colors.
palette[2].r = (2 * palette[0].r + palette[1].r) / 3;
palette[2].g = (2 * palette[0].g + palette[1].g) / 3;
palette[2].b = (2 * palette[0].b + palette[1].b) / 3;
palette[2].a = 0xFF;
palette[3].r = (2 * palette[1].r + palette[0].r) / 3;
palette[3].g = (2 * palette[1].g + palette[0].g) / 3;
palette[3].b = (2 * palette[1].b + palette[0].b) / 3;
palette[3].a = 0xFF;
} else {
// Three-color block: derive the other color.
palette[2].r = (palette[0].r + palette[1].r) / 2;
palette[2].g = (palette[0].g + palette[1].g) / 2;
palette[2].b = (palette[0].b + palette[1].b) / 2;
palette[2].a = 0xFF;
palette[3].r = 0x00;
palette[3].g = 0x00;
palette[3].b = 0x00;
palette[3].a = 0x00;
}
for (int i = 0; i < 16; i++) {
colors[i] = palette[(indices >> (2 * i)) & 0x3];
}
}
static int compareColors(const Color32 *b0, const Color32 *b1) {
int sum = 0;
for (int i = 0; i < 16; i++) {
int r = (b0[i].r - b1[i].r);
int g = (b0[i].g - b1[i].g);
int b = (b0[i].b - b1[i].b);
sum += r * r + g * g + b * b;
}
return sum;
}
static int compareBlock(const BlockDXT1 *b0, const BlockDXT1 *b1) {
Color32 colors0[16];
Color32 colors1[16];
if (memcmp(b0, b1, sizeof(BlockDXT1)) == 0) {
return 0;
} else {
b0->decompress(colors0);
b1->decompress(colors1);
return compareColors(colors0, colors1);
}
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf("%s Starting...\n\n", argv[0]);
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
findCudaDevice(argc, (const char **)argv);
// Load input image.
unsigned char *data = NULL;
uint W, H;
char *image_path = sdkFindFilePath(INPUT_IMAGE, argv[0]);
if (image_path == 0) {
printf("Error, unable to find source image <%s>\n", image_path);
exit(EXIT_FAILURE);
}
if (!sdkLoadPPM4ub(image_path, &data, &W, &H)) {
printf("Error, unable to open source image file <%s>\n", image_path);
exit(EXIT_FAILURE);
}
uint w = W, h = H;
printf("Image Loaded '%s', %d x %d pixels\n\n", image_path, w, h);
// Allocate input image.
const uint memSize = w * h * 4;
assert(0 != memSize);
uint *block_image = (uint *)malloc(memSize);
// Convert linear image to block linear.
for (uint by = 0; by < h / 4; by++) {
for (uint bx = 0; bx < w / 4; bx++) {
for (int i = 0; i < 16; i++) {
const int x = i & 3;
const int y = i / 4;
block_image[(by * w / 4 + bx) * 16 + i] =
((uint *)data)[(by * 4 + y) * 4 * (W / 4) + bx * 4 + x];
}
}
}
// copy into global mem
uint *d_data = NULL;
checkCudaErrors(cudaMalloc((void **)&d_data, memSize));
// Result
uint *d_result = NULL;
const uint compressedSize = (w / 4) * (h / 4) * 8;
checkCudaErrors(cudaMalloc((void **)&d_result, compressedSize));
uint *h_result = (uint *)malloc(compressedSize);
// Compute permutations.
uint permutations[1024];
computePermutations(permutations);
// Copy permutations host to devie.
uint *d_permutations = NULL;
checkCudaErrors(cudaMalloc((void **)&d_permutations, 1024 * sizeof(uint)));
checkCudaErrors(cudaMemcpy(d_permutations, permutations, 1024 * sizeof(uint),
cudaMemcpyHostToDevice));
// create a timer
StopWatchInterface *timer = NULL;
sdkCreateTimer(&timer);
// Copy image from host to device
checkCudaErrors(
cudaMemcpy(d_data, block_image, memSize, cudaMemcpyHostToDevice));
// Determine launch configuration and run timed computation numIterations
// times
uint blocks = ((w + 3) / 4) *
((h + 3) / 4); // rounds up by 1 block in each dim if %4 != 0
int devID;
cudaDeviceProp deviceProp;
// get number of SMs on this GPU
checkCudaErrors(cudaGetDevice(&devID));
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
// Restrict the numbers of blocks to launch on low end GPUs to avoid kernel
// timeout
int blocksPerLaunch = min(blocks, 768 * deviceProp.multiProcessorCount);
printf("Running DXT Compression on %u x %u image...\n", w, h);
printf("\n%u Blocks, %u Threads per Block, %u Threads in Grid...\n\n", blocks,
NUM_THREADS, blocks * NUM_THREADS);
int numIterations = 1;
for (int i = -1; i < numIterations; ++i) {
if (i == 0) {
checkCudaErrors(cudaDeviceSynchronize());
sdkStartTimer(&timer);
}
for (int j = 0; j < (int)blocks; j += blocksPerLaunch) {
compress<<<min(blocksPerLaunch, blocks - j), NUM_THREADS>>>(
d_permutations, d_data, (uint2 *)d_result, j);
}
}
getLastCudaError("compress");
// sync to host, stop timer, record perf
checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&timer);
double dAvgTime = 1.0e-3 * sdkGetTimerValue(&timer) / (double)numIterations;
printf(
"dxtc, Throughput = %.4f MPixels/s, Time = %.5f s, Size = %u Pixels, "
"NumDevsUsed = %i, Workgroup = %d\n",
(1.0e-6 * (double)(W * H) / dAvgTime), dAvgTime, (W * H), 1, NUM_THREADS);
// copy result data from device to host
checkCudaErrors(
cudaMemcpy(h_result, d_result, compressedSize, cudaMemcpyDeviceToHost));
// Write out result data to DDS file
char output_filename[1024];
strcpy(output_filename, image_path);
strcpy(output_filename + strlen(image_path) - 3, "dds");
FILE *fp = fopen(output_filename, "wb");
if (fp == 0) {
printf("Error, unable to open output image <%s>\n", output_filename);
exit(EXIT_FAILURE);
}
DDSHeader header;
header.fourcc = FOURCC_DDS;
header.size = 124;
header.flags = (DDSD_WIDTH | DDSD_HEIGHT | DDSD_CAPS | DDSD_PIXELFORMAT |
DDSD_LINEARSIZE);
header.height = h;
header.width = w;
header.pitch = compressedSize;
header.depth = 0;
header.mipmapcount = 0;
memset(header.reserved, 0, sizeof(header.reserved));
header.pf.size = 32;
header.pf.flags = DDPF_FOURCC;
header.pf.fourcc = FOURCC_DXT1;
header.pf.bitcount = 0;
header.pf.rmask = 0;
header.pf.gmask = 0;
header.pf.bmask = 0;
header.pf.amask = 0;
header.caps.caps1 = DDSCAPS_TEXTURE;
header.caps.caps2 = 0;
header.caps.caps3 = 0;
header.caps.caps4 = 0;
header.notused = 0;
fwrite(&header, sizeof(DDSHeader), 1, fp);
fwrite(h_result, compressedSize, 1, fp);
fclose(fp);
// Make sure the generated image is correct.
const char *reference_image_path = sdkFindFilePath(REFERENCE_IMAGE, argv[0]);
if (reference_image_path == 0) {
printf("Error, unable to find reference image\n");
exit(EXIT_FAILURE);
}
fp = fopen(reference_image_path, "rb");
if (fp == 0) {
printf("Error, unable to open reference image\n");
exit(EXIT_FAILURE);
}
fseek(fp, sizeof(DDSHeader), SEEK_SET);
uint referenceSize = (W / 4) * (H / 4) * 8;
uint *reference = (uint *)malloc(referenceSize);
fread(reference, referenceSize, 1, fp);
fclose(fp);
printf("\nChecking accuracy...\n");
float rms = 0;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
uint referenceBlockIdx = ((y / 4) * (W / 4) + (x / 4));
uint resultBlockIdx = ((y / 4) * (w / 4) + (x / 4));
int cmp = compareBlock(((BlockDXT1 *)h_result) + resultBlockIdx,
((BlockDXT1 *)reference) + referenceBlockIdx);
if (cmp != 0.0f) {
printf("Deviation at (%4d,%4d):\t%f rms\n", x / 4, y / 4,
float(cmp) / 16 / 3);
}
rms += cmp;
}
}
rms /= w * h * 3;
// Free allocated resources and exit
checkCudaErrors(cudaFree(d_permutations));
checkCudaErrors(cudaFree(d_data));
checkCudaErrors(cudaFree(d_result));
free(image_path);
free(data);
free(block_image);
free(h_result);
free(reference);
sdkDeleteTimer(&timer);
printf("RMS(reference, result) = %f\n\n", rms);
printf(rms <= ERROR_THRESHOLD ? "Test passed\n" : "Test failed!\n");
/* Return zero if test passed, one otherwise */
return rms > ERROR_THRESHOLD;
}
|