1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Walsh transforms belong to a class of generalized Fourier transformations.
* They have applications in various fields of electrical engineering
* and numeric theory. In this sample we demonstrate efficient implementation
* of naturally-ordered Walsh transform
* (also known as Walsh-Hadamard or Hadamard transform) in CUDA and its
* particular application to dyadic convolution computation.
* Refer to excellent Jorg Arndt's "Algorithms for Programmers" textbook
* http://www.jjj.de/fxt/fxtbook.pdf (Chapter 22)
*
* Victor Podlozhnyuk (vpodlozhnyuk@nvidia.com)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <helper_functions.h>
#include <helper_cuda.h>
////////////////////////////////////////////////////////////////////////////////
// Reference CPU FWT
////////////////////////////////////////////////////////////////////////////////
extern "C" void fwtCPU(float *h_Output, float *h_Input, int log2N);
extern "C" void slowWTcpu(float *h_Output, float *h_Input, int log2N);
extern "C" void dyadicConvolutionCPU(float *h_Result, float *h_Data,
float *h_Kernel, int log2dataN,
int log2kernelN);
////////////////////////////////////////////////////////////////////////////////
// GPU FWT
////////////////////////////////////////////////////////////////////////////////
#include "fastWalshTransform_kernel.cuh"
////////////////////////////////////////////////////////////////////////////////
// Data configuration
////////////////////////////////////////////////////////////////////////////////
const int log2Kernel = 7;
const int log2Data = 23;
const int dataN = 1 << log2Data;
const int kernelN = 1 << log2Kernel;
const int DATA_SIZE = dataN * sizeof(float);
const int KERNEL_SIZE = kernelN * sizeof(float);
const double NOPS = 3.0 * (double)dataN * (double)log2Data / 2.0;
////////////////////////////////////////////////////////////////////////////////
// Main program
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char *argv[]) {
float *h_Data, *h_Kernel, *h_ResultCPU, *h_ResultGPU;
float *d_Data, *d_Kernel;
double delta, ref, sum_delta2, sum_ref2, L2norm, gpuTime;
StopWatchInterface *hTimer = NULL;
int i;
printf("%s Starting...\n\n", argv[0]);
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
findCudaDevice(argc, (const char **)argv);
sdkCreateTimer(&hTimer);
printf("Initializing data...\n");
printf("...allocating CPU memory\n");
h_Kernel = (float *)malloc(KERNEL_SIZE);
h_Data = (float *)malloc(DATA_SIZE);
h_ResultCPU = (float *)malloc(DATA_SIZE);
h_ResultGPU = (float *)malloc(DATA_SIZE);
printf("...allocating GPU memory\n");
checkCudaErrors(cudaMalloc((void **)&d_Kernel, DATA_SIZE));
checkCudaErrors(cudaMalloc((void **)&d_Data, DATA_SIZE));
printf("...generating data\n");
printf("Data length: %i; kernel length: %i\n", dataN, kernelN);
srand(2007);
for (i = 0; i < kernelN; i++) {
h_Kernel[i] = (float)rand() / (float)RAND_MAX;
}
for (i = 0; i < dataN; i++) {
h_Data[i] = (float)rand() / (float)RAND_MAX;
}
checkCudaErrors(cudaMemset(d_Kernel, 0, DATA_SIZE));
checkCudaErrors(
cudaMemcpy(d_Kernel, h_Kernel, KERNEL_SIZE, cudaMemcpyHostToDevice));
checkCudaErrors(
cudaMemcpy(d_Data, h_Data, DATA_SIZE, cudaMemcpyHostToDevice));
printf("Running GPU dyadic convolution using Fast Walsh Transform...\n");
checkCudaErrors(cudaDeviceSynchronize());
sdkResetTimer(&hTimer);
sdkStartTimer(&hTimer);
fwtBatchGPU(d_Data, 1, log2Data);
fwtBatchGPU(d_Kernel, 1, log2Data);
modulateGPU(d_Data, d_Kernel, dataN);
fwtBatchGPU(d_Data, 1, log2Data);
checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&hTimer);
gpuTime = sdkGetTimerValue(&hTimer);
printf("GPU time: %f ms; GOP/s: %f\n", gpuTime,
NOPS / (gpuTime * 0.001 * 1E+9));
printf("Reading back GPU results...\n");
checkCudaErrors(
cudaMemcpy(h_ResultGPU, d_Data, DATA_SIZE, cudaMemcpyDeviceToHost));
printf("Running straightforward CPU dyadic convolution...\n");
dyadicConvolutionCPU(h_ResultCPU, h_Data, h_Kernel, log2Data, log2Kernel);
printf("Comparing the results...\n");
sum_delta2 = 0;
sum_ref2 = 0;
for (i = 0; i < dataN; i++) {
delta = h_ResultCPU[i] - h_ResultGPU[i];
ref = h_ResultCPU[i];
sum_delta2 += delta * delta;
sum_ref2 += ref * ref;
}
L2norm = sqrt(sum_delta2 / sum_ref2);
printf("Shutting down...\n");
sdkDeleteTimer(&hTimer);
checkCudaErrors(cudaFree(d_Data));
checkCudaErrors(cudaFree(d_Kernel));
free(h_ResultGPU);
free(h_ResultCPU);
free(h_Data);
free(h_Kernel);
printf("L2 norm: %E\n", L2norm);
printf(L2norm < 1e-6 ? "Test passed\n" : "Test failed!\n");
}
|