1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef FWT_KERNEL_CUH
#define FWT_KERNEL_CUH
#ifndef fwt_kernel_cuh
#define fwt_kernel_cuh
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
///////////////////////////////////////////////////////////////////////////////
// Elementary(for vectors less than elementary size) in-shared memory
// combined radix-2 + radix-4 Fast Walsh Transform
///////////////////////////////////////////////////////////////////////////////
#define ELEMENTARY_LOG2SIZE 11
__global__ void fwtBatch1Kernel(float *d_Output, float *d_Input, int log2N) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
const int N = 1 << log2N;
const int base = blockIdx.x << log2N;
//(2 ** 11) * 4 bytes == 8KB -- maximum s_data[] size for G80
extern __shared__ float s_data[];
float *d_Src = d_Input + base;
float *d_Dst = d_Output + base;
for (int pos = threadIdx.x; pos < N; pos += blockDim.x) {
s_data[pos] = d_Src[pos];
}
// Main radix-4 stages
const int pos = threadIdx.x;
for (int stride = N >> 2; stride > 0; stride >>= 2) {
int lo = pos & (stride - 1);
int i0 = ((pos - lo) << 2) + lo;
int i1 = i0 + stride;
int i2 = i1 + stride;
int i3 = i2 + stride;
cg::sync(cta);
float D0 = s_data[i0];
float D1 = s_data[i1];
float D2 = s_data[i2];
float D3 = s_data[i3];
float T;
T = D0;
D0 = D0 + D2;
D2 = T - D2;
T = D1;
D1 = D1 + D3;
D3 = T - D3;
T = D0;
s_data[i0] = D0 + D1;
s_data[i1] = T - D1;
T = D2;
s_data[i2] = D2 + D3;
s_data[i3] = T - D3;
}
// Do single radix-2 stage for odd power of two
if (log2N & 1) {
cg::sync(cta);
for (int pos = threadIdx.x; pos < N / 2; pos += blockDim.x) {
int i0 = pos << 1;
int i1 = i0 + 1;
float D0 = s_data[i0];
float D1 = s_data[i1];
s_data[i0] = D0 + D1;
s_data[i1] = D0 - D1;
}
}
cg::sync(cta);
for (int pos = threadIdx.x; pos < N; pos += blockDim.x) {
d_Dst[pos] = s_data[pos];
}
}
////////////////////////////////////////////////////////////////////////////////
// Single in-global memory radix-4 Fast Walsh Transform pass
// (for strides exceeding elementary vector size)
////////////////////////////////////////////////////////////////////////////////
__global__ void fwtBatch2Kernel(float *d_Output, float *d_Input, int stride) {
const int pos = blockIdx.x * blockDim.x + threadIdx.x;
const int N = blockDim.x * gridDim.x * 4;
float *d_Src = d_Input + blockIdx.y * N;
float *d_Dst = d_Output + blockIdx.y * N;
int lo = pos & (stride - 1);
int i0 = ((pos - lo) << 2) + lo;
int i1 = i0 + stride;
int i2 = i1 + stride;
int i3 = i2 + stride;
float D0 = d_Src[i0];
float D1 = d_Src[i1];
float D2 = d_Src[i2];
float D3 = d_Src[i3];
float T;
T = D0;
D0 = D0 + D2;
D2 = T - D2;
T = D1;
D1 = D1 + D3;
D3 = T - D3;
T = D0;
d_Dst[i0] = D0 + D1;
d_Dst[i1] = T - D1;
T = D2;
d_Dst[i2] = D2 + D3;
d_Dst[i3] = T - D3;
}
////////////////////////////////////////////////////////////////////////////////
// Put everything together: batched Fast Walsh Transform CPU front-end
////////////////////////////////////////////////////////////////////////////////
void fwtBatchGPU(float *d_Data, int M, int log2N) {
const int THREAD_N = 256;
int N = 1 << log2N;
dim3 grid((1 << log2N) / (4 * THREAD_N), M, 1);
for (; log2N > ELEMENTARY_LOG2SIZE; log2N -= 2, N >>= 2, M <<= 2) {
fwtBatch2Kernel<<<grid, THREAD_N>>>(d_Data, d_Data, N / 4);
getLastCudaError("fwtBatch2Kernel() execution failed\n");
}
fwtBatch1Kernel<<<M, N / 4, N * sizeof(float)>>>(d_Data, d_Data, log2N);
getLastCudaError("fwtBatch1Kernel() execution failed\n");
}
////////////////////////////////////////////////////////////////////////////////
// Modulate two arrays
////////////////////////////////////////////////////////////////////////////////
__global__ void modulateKernel(float *d_A, float *d_B, int N) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int numThreads = blockDim.x * gridDim.x;
float rcpN = 1.0f / (float)N;
for (int pos = tid; pos < N; pos += numThreads) {
d_A[pos] *= d_B[pos] * rcpN;
}
}
// Interface to modulateKernel()
void modulateGPU(float *d_A, float *d_B, int N) {
modulateKernel<<<128, 256>>>(d_A, d_B, N);
}
#endif
#endif
|