File: fluidsGL_kernels.cuh

package info (click to toggle)
nvidia-cuda-samples 12.4.1~dfsg-1
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 313,216 kB
  • sloc: cpp: 82,042; makefile: 53,971; xml: 15,381; ansic: 8,630; sh: 91; python: 74
file content (76 lines) | stat: -rw-r--r-- 3,923 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef __STABLEFLUIDS_KERNELS_CUH_
#define __STABLEFLUIDS_KERNELS_CUH_

#include "defines.h"

// Vector data type used to velocity and force fields
typedef float2 cData;

void setupTexture(int x, int y);
void updateTexture(cData *data, size_t w, size_t h, size_t pitch);
void deleteTexture(void);

// This method adds constant force vectors to the velocity field
// stored in 'v' according to v(x,t+1) = v(x,t) + dt * f.
__global__ void addForces_k(cData *v, int dx, int dy, int spx, int spy,
                            float fx, float fy, int r, size_t pitch);

// This method performs the velocity advection step, where we
// trace velocity vectors back in time to update each grid cell.
// That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear
// interpolation in the velocity space.
__global__ void advectVelocity_k(cData *v, float *vx, float *vy, int dx,
                                 int pdx, int dy, float dt, int lb,
                                 cudaTextureObject_t tex);

// This method performs velocity diffusion and forces mass conservation
// in the frequency domain. The inputs 'vx' and 'vy' are complex-valued
// arrays holding the Fourier coefficients of the velocity field in
// X and Y. Diffusion in this space takes a simple form described as:
// v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity,
// and k is the wavenumber. The projection step forces the Fourier
// velocity vectors to be orthogonal to the wave wave vectors for each
// wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2.
__global__ void diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt,
                                 float visc, int lb);

// This method updates the velocity field 'v' using the two complex
// arrays from the previous step: 'vx' and 'vy'. Here we scale the
// real components by 1/(dx*dy) to account for an unnormalized FFT.
__global__ void updateVelocity_k(cData *v, float *vx, float *vy, int dx,
                                 int pdx, int dy, int lb, size_t pitch);

// This method updates the particles by moving particle positions
// according to the velocity field and time step. That is, for each
// particle: p(t+1) = p(t) + dt * v(p(t)).
__global__ void advectParticles_k(cData *part, cData *v, int dx, int dy,
                                  float dt, int lb, size_t pitch);

#endif