1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include <cufft.h> // CUDA FFT Libraries
#include <helper_cuda.h> // Helper functions for CUDA Error handling
// OpenGL Graphics includes
#include <GLES3/gl31.h>
// FluidsGLES CUDA kernel definitions
#include "fluidsGLES_kernels.cuh"
// Texture object for reading velocity field
cudaTextureObject_t texObj;
static cudaArray *array = NULL;
// Particle data
extern GLuint vbo; // OpenGL vertex buffer object
extern struct cudaGraphicsResource
*cuda_vbo_resource; // handles OpenGL-CUDA exchange
// Texture pitch
extern size_t tPitch;
extern cufftHandle planr2c;
extern cufftHandle planc2r;
cData *vxfield = NULL;
cData *vyfield = NULL;
void setupTexture(int x, int y) {
cudaChannelFormatDesc desc = cudaCreateChannelDesc<float2>();
cudaMallocArray(&array, &desc, y, x);
getLastCudaError("cudaMalloc failed");
cudaResourceDesc texRes;
memset(&texRes, 0, sizeof(cudaResourceDesc));
texRes.resType = cudaResourceTypeArray;
texRes.res.array.array = array;
cudaTextureDesc texDescr;
memset(&texDescr, 0, sizeof(cudaTextureDesc));
texDescr.normalizedCoords = false;
texDescr.filterMode = cudaFilterModeLinear;
texDescr.addressMode[0] = cudaAddressModeWrap;
texDescr.readMode = cudaReadModeElementType;
checkCudaErrors(cudaCreateTextureObject(&texObj, &texRes, &texDescr, NULL));
}
void updateTexture(cData *data, size_t wib, size_t h, size_t pitch) {
checkCudaErrors(cudaMemcpy2DToArray(array, 0, 0, data, pitch, wib, h,
cudaMemcpyDeviceToDevice));
}
void deleteTexture(void) {
checkCudaErrors(cudaDestroyTextureObject(texObj));
checkCudaErrors(cudaFreeArray(array));
}
// Note that these kernels are designed to work with arbitrary
// domain sizes, not just domains that are multiples of the tile
// size. Therefore, we have extra code that checks to make sure
// a given thread location falls within the domain boundaries in
// both X and Y. Also, the domain is covered by looping over
// multiple elements in the Y direction, while there is a one-to-one
// mapping between threads in X and the tile size in X.
// Nolan Goodnight 9/22/06
// This method adds constant force vectors to the velocity field
// stored in 'v' according to v(x,t+1) = v(x,t) + dt * f.
__global__ void addForces_k(cData *v, int dx, int dy, int spx, int spy,
float fx, float fy, int r, size_t pitch) {
int tx = threadIdx.x;
int ty = threadIdx.y;
cData *fj = (cData *)((char *)v + (ty + spy) * pitch) + tx + spx;
cData vterm = *fj;
tx -= r;
ty -= r;
float s = 1.f / (1.f + tx * tx * tx * tx + ty * ty * ty * ty);
vterm.x += s * fx;
vterm.y += s * fy;
*fj = vterm;
}
// This method performs the velocity advection step, where we
// trace velocity vectors back in time to update each grid cell.
// That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear
// interpolation in the velocity space.
__global__ void advectVelocity_k(cData *v, float *vx, float *vy, int dx,
int pdx, int dy, float dt, int lb,
cudaTextureObject_t texObject) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
cData vterm, ploc;
float vxterm, vyterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * pdx + gtidx;
vterm = tex2D<cData>(texObject, (float)gtidx, (float)fi);
ploc.x = (gtidx + 0.5f) - (dt * vterm.x * dx);
ploc.y = (fi + 0.5f) - (dt * vterm.y * dy);
vterm = tex2D<cData>(texObject, ploc.x, ploc.y);
vxterm = vterm.x;
vyterm = vterm.y;
vx[fj] = vxterm;
vy[fj] = vyterm;
}
}
}
}
// This method performs velocity diffusion and forces mass conservation
// in the frequency domain. The inputs 'vx' and 'vy' are complex-valued
// arrays holding the Fourier coefficients of the velocity field in
// X and Y. Diffusion in this space takes a simple form described as:
// v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity,
// and k is the wavenumber. The projection step forces the Fourier
// velocity vectors to be orthogonal to the vectors for each
// wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2.
__global__ void diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt,
float visc, int lb) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
cData xterm, yterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * dx + gtidx;
xterm = vx[fj];
yterm = vy[fj];
// Compute the index of the wavenumber based on the
// data order produced by a standard NN FFT.
int iix = gtidx;
int iiy = (fi > dy / 2) ? (fi - (dy)) : fi;
// Velocity diffusion
float kk = (float)(iix * iix + iiy * iiy); // k^2
float diff = 1.f / (1.f + visc * dt * kk);
xterm.x *= diff;
xterm.y *= diff;
yterm.x *= diff;
yterm.y *= diff;
// Velocity projection
if (kk > 0.f) {
float rkk = 1.f / kk;
// Real portion of velocity projection
float rkp = (iix * xterm.x + iiy * yterm.x);
// Imaginary portion of velocity projection
float ikp = (iix * xterm.y + iiy * yterm.y);
xterm.x -= rkk * rkp * iix;
xterm.y -= rkk * ikp * iix;
yterm.x -= rkk * rkp * iiy;
yterm.y -= rkk * ikp * iiy;
}
vx[fj] = xterm;
vy[fj] = yterm;
}
}
}
}
// This method updates the velocity field 'v' using the two complex
// arrays from the previous step: 'vx' and 'vy'. Here we scale the
// real components by 1/(dx*dy) to account for an unnormalized FFT.
__global__ void updateVelocity_k(cData *v, float *vx, float *vy, int dx,
int pdx, int dy, int lb, size_t pitch) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
float vxterm, vyterm;
cData nvterm;
// gtidx is the domain location in x for this thread
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fjr = fi * pdx + gtidx;
vxterm = vx[fjr];
vyterm = vy[fjr];
// Normalize the result of the inverse FFT
float scale = 1.f / (dx * dy);
nvterm.x = vxterm * scale;
nvterm.y = vyterm * scale;
cData *fj = (cData *)((char *)v + fi * pitch) + gtidx;
*fj = nvterm;
}
} // If this thread is inside the domain in Y
} // If this thread is inside the domain in X
}
// This method updates the particles by moving particle positions
// according to the velocity field and time step. That is, for each
// particle: p(t+1) = p(t) + dt * v(p(t)).
__global__ void advectParticles_k(cData *part, cData *v, int dx, int dy,
float dt, int lb, size_t pitch) {
int gtidx = blockIdx.x * blockDim.x + threadIdx.x;
int gtidy = blockIdx.y * (lb * blockDim.y) + threadIdx.y * lb;
int p;
// gtidx is the domain location in x for this thread
cData pterm, vterm;
if (gtidx < dx) {
for (p = 0; p < lb; p++) {
// fi is the domain location in y for this thread
int fi = gtidy + p;
if (fi < dy) {
int fj = fi * dx + gtidx;
pterm = part[fj];
int xvi = ((int)(pterm.x * dx));
int yvi = ((int)(pterm.y * dy));
vterm = *((cData *)((char *)v + yvi * pitch) + xvi);
pterm.x += dt * vterm.x;
pterm.x = pterm.x - (int)pterm.x;
pterm.x += 1.f;
pterm.x = pterm.x - (int)pterm.x;
pterm.y += dt * vterm.y;
pterm.y = pterm.y - (int)pterm.y;
pterm.y += 1.f;
pterm.y = pterm.y - (int)pterm.y;
part[fj] = pterm;
}
} // If this thread is inside the domain in Y
} // If this thread is inside the domain in X
}
// These are the external function calls necessary for launching fluid simuation
extern "C" void addForces(cData *v, int dx, int dy, int spx, int spy, float fx,
float fy, int r) {
dim3 tids(2 * r + 1, 2 * r + 1);
addForces_k<<<1, tids>>>(v, dx, dy, spx, spy, fx, fy, r, tPitch);
getLastCudaError("addForces_k failed.");
}
extern "C" void advectVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
int dy, float dt) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
updateTexture(v, DIM * sizeof(cData), DIM, tPitch);
advectVelocity_k<<<grid, tids>>>(v, vx, vy, dx, pdx, dy, dt, TILEY / TIDSY,
texObj);
getLastCudaError("advectVelocity_k failed.");
}
extern "C" void diffuseProject(cData *vx, cData *vy, int dx, int dy, float dt,
float visc) {
// Forward FFT
checkCudaErrors(cufftExecR2C(planr2c, (cufftReal *)vx, (cufftComplex *)vx));
checkCudaErrors(cufftExecR2C(planr2c, (cufftReal *)vy, (cufftComplex *)vy));
uint3 grid = make_uint3((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1), 1);
uint3 tids = make_uint3(TIDSX, TIDSY, 1);
diffuseProject_k<<<grid, tids>>>(vx, vy, dx, dy, dt, visc, TILEY / TIDSY);
getLastCudaError("diffuseProject_k failed.");
// Inverse FFT
checkCudaErrors(cufftExecC2R(planc2r, (cufftComplex *)vx, (cufftReal *)vx));
checkCudaErrors(cufftExecC2R(planc2r, (cufftComplex *)vy, (cufftReal *)vy));
}
extern "C" void updateVelocity(cData *v, float *vx, float *vy, int dx, int pdx,
int dy) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
updateVelocity_k<<<grid, tids>>>(v, vx, vy, dx, pdx, dy, TILEY / TIDSY,
tPitch);
getLastCudaError("updateVelocity_k failed.");
}
extern "C" void advectParticles(GLuint vbo, cData *v, int dx, int dy,
float dt) {
dim3 grid((dx / TILEX) + (!(dx % TILEX) ? 0 : 1),
(dy / TILEY) + (!(dy % TILEY) ? 0 : 1));
dim3 tids(TIDSX, TIDSY);
cData *p;
checkCudaErrors(cudaGraphicsMapResources(1, &cuda_vbo_resource, 0));
getLastCudaError("cudaGraphicsMapResources failed");
size_t num_bytes;
checkCudaErrors(cudaGraphicsResourceGetMappedPointer((void **)&p, &num_bytes,
cuda_vbo_resource));
getLastCudaError("cudaGraphicsResourceGetMappedPointer failed");
advectParticles_k<<<grid, tids>>>(p, v, dx, dy, dt, TILEY / TIDSY, tPitch);
getLastCudaError("advectParticles_k failed.");
checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_vbo_resource, 0));
}
|