1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef QUASIRANDOMGENERATOR_KERNEL_CUH
#define QUASIRANDOMGENERATOR_KERNEL_CUH
#include <stdio.h>
#include <stdlib.h>
#include <helper_cuda.h>
#include "quasirandomGenerator_common.h"
// Fast integer multiplication
#define MUL(a, b) __umul24(a, b)
////////////////////////////////////////////////////////////////////////////////
// Niederreiter quasirandom number generation kernel
////////////////////////////////////////////////////////////////////////////////
static __constant__ unsigned int c_Table[QRNG_DIMENSIONS][QRNG_RESOLUTION];
static __global__ void quasirandomGeneratorKernel(float *d_Output,
unsigned int seed,
unsigned int N) {
unsigned int *dimBase = &c_Table[threadIdx.y][0];
unsigned int tid = MUL(blockDim.x, blockIdx.x) + threadIdx.x;
unsigned int threadN = MUL(blockDim.x, gridDim.x);
for (unsigned int pos = tid; pos < N; pos += threadN) {
unsigned int result = 0;
unsigned int data = seed + pos;
for (int bit = 0; bit < QRNG_RESOLUTION; bit++, data >>= 1)
if (data & 1) {
result ^= dimBase[bit];
}
d_Output[MUL(threadIdx.y, N) + pos] = (float)(result + 1) * INT_SCALE;
}
}
// Table initialization routine
extern "C" void initTableGPU(
unsigned int tableCPU[QRNG_DIMENSIONS][QRNG_RESOLUTION]) {
checkCudaErrors(cudaMemcpyToSymbol(
c_Table, tableCPU,
QRNG_DIMENSIONS * QRNG_RESOLUTION * sizeof(unsigned int)));
}
// Host-side interface
extern "C" void quasirandomGeneratorGPU(float *d_Output, unsigned int seed,
unsigned int N) {
dim3 threads(128, QRNG_DIMENSIONS);
quasirandomGeneratorKernel<<<128, threads>>>(d_Output, seed, N);
getLastCudaError("quasirandomGeneratorKernel() execution failed.\n");
}
////////////////////////////////////////////////////////////////////////////////
// Moro's Inverse Cumulative Normal Distribution function approximation
////////////////////////////////////////////////////////////////////////////////
__device__ inline float MoroInvCNDgpu(unsigned int x) {
const float a1 = 2.50662823884f;
const float a2 = -18.61500062529f;
const float a3 = 41.39119773534f;
const float a4 = -25.44106049637f;
const float b1 = -8.4735109309f;
const float b2 = 23.08336743743f;
const float b3 = -21.06224101826f;
const float b4 = 3.13082909833f;
const float c1 = 0.337475482272615f;
const float c2 = 0.976169019091719f;
const float c3 = 0.160797971491821f;
const float c4 = 2.76438810333863E-02f;
const float c5 = 3.8405729373609E-03f;
const float c6 = 3.951896511919E-04f;
const float c7 = 3.21767881768E-05f;
const float c8 = 2.888167364E-07f;
const float c9 = 3.960315187E-07f;
float z;
bool negate = false;
// Ensure the conversion to floating point will give a value in the
// range (0,0.5] by restricting the input to the bottom half of the
// input domain. We will later reflect the result if the input was
// originally in the top half of the input domain
if (x >= 0x80000000UL) {
x = 0xffffffffUL - x;
negate = true;
}
// x is now in the range [0,0x80000000) (i.e. [0,0x7fffffff])
// Convert to floating point in (0,0.5]
const float x1 = 1.0f / static_cast<float>(0xffffffffUL);
const float x2 = x1 / 2.0f;
float p1 = x * x1 + x2;
// Convert to floating point in (-0.5,0]
float p2 = p1 - 0.5f;
// The input to the Moro inversion is p2 which is in the range
// (-0.5,0]. This means that our output will be the negative side
// of the bell curve (which we will reflect if "negate" is true).
// Main body of the bell curve for |p| < 0.42
if (p2 > -0.42f) {
z = p2 * p2;
z = p2 * (((a4 * z + a3) * z + a2) * z + a1) /
((((b4 * z + b3) * z + b2) * z + b1) * z + 1.0f);
}
// Special case (Chebychev) for tail
else {
z = __logf(-__logf(p1));
z = -(c1 + z * (c2 + z * (c3 + z * (c4 + z * (c5 + z * (c6 + z * (c7 + z
* (c8 + z * c9))))))));
}
// If the original input (x) was in the top half of the range, reflect
// to get the positive side of the bell curve
return negate ? -z : z;
}
////////////////////////////////////////////////////////////////////////////////
// Main kernel. Choose between transforming
// input sequence and uniform ascending (0, 1) sequence
////////////////////////////////////////////////////////////////////////////////
static __global__ void inverseCNDKernel(float *d_Output, unsigned int *d_Input,
unsigned int pathN) {
unsigned int distance = ((unsigned int)-1) / (pathN + 1);
unsigned int tid = MUL(blockDim.x, blockIdx.x) + threadIdx.x;
unsigned int threadN = MUL(blockDim.x, gridDim.x);
// Transform input number sequence if it's supplied
if (d_Input) {
for (unsigned int pos = tid; pos < pathN; pos += threadN) {
unsigned int d = d_Input[pos];
d_Output[pos] = (float)MoroInvCNDgpu(d);
}
}
// Else generate input uniformly placed samples on the fly
// and write to destination
else {
for (unsigned int pos = tid; pos < pathN; pos += threadN) {
unsigned int d = (pos + 1) * distance;
d_Output[pos] = (float)MoroInvCNDgpu(d);
}
}
}
extern "C" void inverseCNDgpu(float *d_Output, unsigned int *d_Input,
unsigned int N) {
inverseCNDKernel<<<128, 128>>>(d_Output, d_Input, N);
getLastCudaError("inverseCNDKernel() execution failed.\n");
}
#endif
|